scholarly journals Sensitivity Analysis by Adjoint Method and Optimal Design of the Dynamic Systems that Require Time Integration

1994 ◽  
Vol 1994 (175) ◽  
pp. 317-323 ◽  
Author(s):  
Katsuyuki Suzuki ◽  
Hideomi Ohtsubo
Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi

The topology optimization method is extended for the optimization of geometrically nonlinear, time-dependent multibody dynamics systems undergoing nonlinear responses. In particular, this paper focuses on sensitivity analysis methods for topology optimization of general multibody dynamics systems, which include large displacements and rotations and dynamic loading. The generalized-α method is employed to solve the multibody dynamics system equations of motion. The developed time integration incorporated sensitivity analysis method is based on a linear approximation of two consecutive time steps, such that the generalized-α method is only applied once in the time integration of the equations of motion. This approach significantly reduces the computational costs associated with sensitivity analysis. To show the effectiveness of the developed procedures, topology optimization of a ground structure embedded in a planar multibody dynamics system under dynamic loading is presented.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750035 ◽  
Author(s):  
C. P. Sudheesh Kumar ◽  
C. Sujatha ◽  
K. Shankar

The forced-free responses of nonuniform beams under moving point loads are analyzed in this paper. Simple approximate analytical formulae for the forced responses of undamped nonuniform beams, derived using the fundamental mode by the Rayleigh–Ritz (R–R) method, are presented. The responses of both simply supported and clamped–clamped beams are analyzed. The responses are also determined by the finite element method (FEM) in which nonuniform elements are used for fast convergence. It is found that the present method yields results that are very close to those obtained by the FEM. As this method does not require time integration, it is faster and computationally more efficient. Though the single-mode analysis of forced vibration of uniform beams under moving loads has been done by several researchers, its application to nonuniform beams has not been reported.


1982 ◽  
Vol 39 (9) ◽  
pp. 2038-2050 ◽  
Author(s):  
Matthew C. G. Hall ◽  
Dan G. Cacuci ◽  
Michael E. Schlesinger

Author(s):  
Radu Serban ◽  
Jeffrey S. Freeman

Abstract Methods for formulating the first-order design sensitivity of multibody systems by direct differentiation are presented. These types of systems, when formulated by Euler-Lagrange techniques, are representable using differential-algebraic equations (DAE). The sensitivity analysis methods presented also result in systems of DAE’s which can be solved using standard techniques. Problems with previous direct differentiation sensitivity analysis derivations are highlighted, since they do not result in valid systems of DAE’s. This is shown using the simple pendulum example, which can be analyzed in both ODE and DAE form. Finally, a slider-crank example is used to show application of the method to mechanism analysis.


2021 ◽  
Author(s):  
Adwait Verulkar ◽  
Corina Sandu ◽  
Daniel Dopico ◽  
Adrian Sandu

Abstract Sensitivity analysis is one of the most prominent gradient based optimization techniques for mechanical systems. Model sensitivities are the derivatives of the generalized coordinates defining the motion of the system in time with respect to the system design parameters. These sensitivities can be calculated using finite differences, but the accuracy and computational inefficiency of this method limits its use. Hence, the methodologies of direct and adjoint sensitivity analysis have gained prominence. Recent research has presented computationally efficient methodologies for both direct and adjoint sensitivity analysis of complex multibody dynamic systems. The contribution of this article is in the development of the mathematical framework for conducting the direct sensitivity analysis of multibody dynamic systems with joint friction using the index-1 formulation. For modeling friction in multibody systems, the Brown and McPhee friction model has been used. This model incorporates the effects of both static and dynamic friction on the model dynamics. A case study has been conducted on a spatial slider-crank mechanism to illustrate the application of this methodology to real-world systems. Using computer models, with and without joint friction, effect of friction on the dynamics and model sensitivities has been demonstrated. The sensitivities of slider velocity have been computed with respect to the design parameters of crank length, rod length, and the parameters defining the friction model. Due to the highly non-linear nature of friction, the model dynamics are more sensitive during the transition phases, where the friction coefficient changes from static to dynamic and vice versa.


Author(s):  
Alfonso Callejo ◽  
Daniel Dopico

Algorithms for the sensitivity analysis of multibody systems are quickly maturing as computational and software resources grow. Indeed, the area has made substantial progress since the first academic methods and examples were developed. Today, sensitivity analysis tools aimed at gradient-based design optimization are required to be as computationally efficient and scalable as possible. This paper presents extensive verification of one of the most popular sensitivity analysis techniques, namely the direct differentiation method (DDM). Usage of such method is recommended when the number of design parameters relative to the number of outputs is small and when the time integration algorithm is sensitive to accumulation errors. Verification is hereby accomplished through two radically different computational techniques, namely manual differentiation and automatic differentiation, which are used to compute the necessary partial derivatives. Experiments are conducted on an 18-degree-of-freedom, 366-dependent-coordinate bus model with realistic geometry and tire contact forces, which constitutes an unusually large system within general-purpose sensitivity analysis of multibody systems. The results are in good agreement; the manual technique provides shorter runtimes, whereas the automatic differentiation technique is easier to implement. The presented results highlight the potential of manual and automatic differentiation approaches within general-purpose simulation packages, and the importance of formulation benchmarking.


Sign in / Sign up

Export Citation Format

Share Document