Abstract The detailed heating requirements for specific applications must be considered before construction and implementation of any induction heating process. These requirements may include considerations such as type of heating, throughput and heating time, workpiece material, peak temperature, and so forth. The major applications of induction technology include through heating, surface heating (for surface heat treatment), metal melting, welding, brazing, and soldering. This chapter summarizes the selection of equipment and related design considerations for these applications.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1484
Author(s):  
Jinkyu Choi ◽  
Seoksoon Lee

AISI 1045 specimen was compared through a high-frequency heat treatment simulation and experiment considering metal phase transformation. Hardening zone predictions were confirmed through cooling and metal phase transformation simulations after obtaining the results from electromagnetic heat transfer simulations. The cooling process was modeled by applying the cooling coefficient of the cooling water in the same way as the actual heat-treatment process. To obtain the current flowing through the coil during high-frequency induction heating, the voltage was measured and applied using the resistance–inductance–capacitance circuit calculation method. Experimental and simulated results of the heating temperature and curing depth of an AISI 1045 specimen with a carbon content of 0.45% were compared; the comparison indicated good agreement between the two. Using the simulation results, we established a method for obtaining the current flowing through the induction coil for predicting the extent and depth of the hardening zone during high-frequency induction heat treatment.


Author(s):  
Jinkyu Choi ◽  
Seoksoon Lee

Based on electromagnetic heat transfer and metal phase transformation co-simulations, we modeled an AISI 1045 specimen under high-frequency heat treatment. Hardening zone predictions were confirmed through cooling and metal phase transformation simulations after obtaining the results from electromagnetic heat transfer simulations. The cooling process was modeled by applying the cooling coefficient of the cooling water in the same way as the actual heat-treatment process. To obtain the current flowing through the coil during high-frequency induction heating, the voltage was measured and applied using the resistance–inductance–capacitance circuit calculation method. Experimental and simulated results of the heating temperature and curing depth of an AISI 1045 specimen with a carbon content of 0.45% were compared; the comparison indicated good agreement between the two. Using the simulation results, we established a method for obtaining the current flowing through the induction coil for predicting the extent and depth of the hardening zone during high-frequency induction heat treatment.


2013 ◽  
Vol 652-654 ◽  
pp. 1399-1404 ◽  
Author(s):  
Yue Ying Li ◽  
Qi Chao Deng ◽  
Ping Shi ◽  
Zhen Liang Qiao

Two kinds of surface heat treatment (wide-band laser surface quenching and high-frequency induction quenching) had been performed on a ferrous PM cam material for automobile applications. Microstructure, hardness and tribological properties of ferrous PM cam materials were investigated. After laser surface quenching, the sintered cam materials could obtain finer martensite microstructure and higher hardness value, compared to high-frequency induction quenching. Wear tests revealed the superior wear resistance and coefficient of friction of laser surface hardened specimens in comparison with high-frequency induction quenched ones. Laser surface quenching can be a more effective surface heat treatment to improve wear resistance of the sintered cam materials than high-frequency induction quenching. On the lower test loads (such as 50N), the wear mechanism of the surface quenched ferrous PM cam materials is dominated adhesive and abrasive wear, while on the higher test loads (such as 120N and 150N), it is primarily delamination wear and abrasive wear.


2011 ◽  
Vol 49 (03) ◽  
pp. 231-236 ◽  
Author(s):  
Song-Lee Du ◽  
Sung-Hun Cho ◽  
In-Yong Ko ◽  
Jung-Mann Doh ◽  
Jin-Kook Yoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document