scholarly journals Hepatic iron load differs strikingly between peritoneal dialysis and hemodialysis patients

2019 ◽  
Vol 2 (4) ◽  
pp. 181-191
Author(s):  
Guy Rostoker ◽  
Mireille Griuncelli ◽  
Nasredine Ghali ◽  
Séverine Beaudreuil ◽  
Yves Cohen ◽  
...  

Introduction Iron overload is one of the most controversial topics in the management of anemic dialysis patients. Parenteral iron supplementation is commonly prescribed to hemodialysis (HD) patients but less frequently to peritoneal dialysis (PD) patients. Moreover, ferritin targets are far lower and more physiological in PD than in HD.  Methods We compared the liver iron concentration (LIC) measured by means of Signal-Intensity ratio (SIR) magnetic resonance imaging (MRI) according to Rennes University method in a cohort of 32 PD patients living in the Paris region published in 2017, with two cohorts of French HD patients studied in the same way (119 patients reported in 2012 and 80 further patients reported in 2014). Results Normal hepatic iron load (LIC ≤ 50 µmol/g of dry weight) was observed in 81.3% of the 32 PD patients (CI: 64.3-91.5%), as compared to only 16% (CI: 10.4-23.7%) in the first HD cohort and 35% (CI: 25.4-45.9%) in the second HD cohort (p<0.0001 for both comparisons; X2 test). Mild iron overload (50 < LIC ≤ 100 µmol/g) was found in 5 PD patients and severe overload (LIC > 200 µmol/g) in only one PD patient (who had received IV iron) (3.1%; CI: 0-17.1%). Conversely, severe iron overload was found in 30.3% of patients in the first HD cohort (CI: 22.7-39%) and 11.3% of those in the second HD cohort (CI: 5.8-20.2%) (p= 0.0033 versus the first HD cohort, X2 test). Conclusion Contrary to hemodialysis patients, iron overload is rare and mostly mild in peritoneal dialysis patients.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2252-2252
Author(s):  
Antonella Meloni ◽  
Giovan Battista Ruffo ◽  
Daniele De Marchi ◽  
Antonio Cardinale ◽  
Anna Pietrapertosa ◽  
...  

Abstract Introduction Sickle-thalassemia results from the combined heterozygosity for sickle-cell and β-thalassemia genes. This study evaluates myocardial and hepatic iron overload and cardiac function in Italian patients and explores their correlation with transfusions, age and sex. Methods Fifty-nine sickle-thalassemia patients (29 males, mean age 35.6±14.1 years), enrolled in the MIOT network underwent magnetic resonance imaging (MRI). T2* value for all 16 myocardial segments and global heart T2* value were calculated. Hepatic T2* value was converted into liver iron concentration (LIC). Cine images were acquired to quantify biventricular volumes and ejection fraction (EF). Results 55 (93%) patients had all segmental T2* values normal (>20 ms). Of the 4 patients with abnormal segmental T2* values, all showed an heterogeneous myocardial iron overload (some segments with T2*>20 ms and other with T2*<20 ms) and only one had a global T2*<20 ms. The mean global heart T2* value was 34.4±6.2 ms. The mean LIC was 5.9±6.5 mg/g/dw and 30 patients (50.8%) had a pathological value (≥ 3 mg/g dw). There was a statistically significant positive correlation between global heart T2* and age but with poor linearity (R=0.368; P=0.004) and there was not a significant correlation between age and LIC. Males and females had comparable global heart T2* values and LIC values. Twenty patients were regularly transfused, 32 received sporadic transfusions while 7 were not transfused. The comparison among the three groups is shown in Table 1. We did not find significant differences in the global heart T2* value while patients regularly transfused had significantly higher LIC than sporadically transfused patients. Biventricular volumes indexed by body surface area and ejection fractions were comparable among the groups. Conclusions In respect of MIO, the sickle/thalassemia patients are similar to patients with homozygous SCD for which iron overloading is relatively rare. Hepatic iron overload may develop also in no regularly-transfused patients, maybe due to increased absorption of iron from the digestive tract, characteristic of both SCD and thalassemia intermedia patients. This finding underlines the importance to monitor by MRI also no regularly transfused sickle/thalassemia patients. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4041-4041
Author(s):  
Antonella Meloni ◽  
Aurelio Maggio ◽  
Anna Pietrapertosa ◽  
Pier Paolo Bitti ◽  
Sabrina Armari ◽  
...  

Abstract Background. Few studies have evaluated the efficacy of iron chelation therapy in thalassemia intermedia (TI) patients. Our study aimed to prospectively assess by quantitative Magnetic Resonance imaging (MRI) the efficacy of the three available chelators in monotherapy in transfusion dependent (TD) TI patients. Methods. Among the 325 TI patients enrolled in the MIOT (Myocardial Iron Overload in Thalassemia) network, we selected 103 TI patients TD with an MRI follow-up (FU) study at 18±3 months who had been received one chelator alone between the two MRI scans. Iron overload was assessed by the T2* multiecho technique. Hepatic T2* values were converted into liver iron concentration (LIC) values. Results. Three groups of patients were identified: 27 patients (13 females, mean age 40.12±10.31 years) treated with desferioxamine (DFO – mean dosage 37.52±8.69 mg/kg/die), 23 patients (14 females, mean age 34.73±10.67 years) treated with deferiprone (DFP– dosage 71.70±14.46mg/kg/die) and 14 patients (9 females, mean age 36.63±10.92 years) treated with deferasirox (DFX – mean dosage 27.75±5.04 mg/kg/die). Excellent/good levels of compliance were similar in the DFO (92.6%), DFP (100%) and DFX (100%) groups (P=0.345). The mean starting age of regular transfusion was 14.73±15.89 years. At baseline in DFO group two patients (7.4%) showed a global heart T2*<20 ms and one of them showed no cardiac iron at the FU. At baseline in DFP group two patients (8.7%) showed a global heart T2*<20 ms and one of them showed no cardiac iron at the FU. All the 5 patients (35.7%) under DFX therapy with pathological global heart T2* at the baseline remained at the same status at the FU. The percentage of patients who maintained a normal global heart T2* value was comparable for DFO (100%), DFP (100%) and DFX (88.9%) groups (P=0.164). Among the 46 patients with hepatic iron at baseline (MRI LIC ≥3 mg/g/dw), the reduction in the MRI LIC values was significant only in the DFO group (DFO: -3.39±6.38 mg/g/dw P=0.041; DFP: -2.25±6.01 mg/g/dw P=0.136 and DFX: -0.36±5.56 mg/g/dw P=0.875). The decrease in MRI LIC values was comparable among the groups (P=0.336). The number of patients with a MRI LIC<3 mg/g/dw went up from 10 (37%) to 11 (40.7%) in the DFO group, from 6 (26.1%) to 8 (34.8%) in the DFP group and from 2 (14.3%) to 8 (57.1%) in the DFX group. The percentage of patients who maintained a normal MRI LIC value was comparable for DFO (90%) vs DFP (50%) and DFX (100%) groups (P=0.191). Conclusion: Prospectively in transfusion-dependent TI patients at the dosages used in the clinical practice, DFO and DFP showed 100% efficacy in maintaining a normal global heart T2* value while DFX had 100% efficacy in maintaining a normal LIC value. Further prospective studies involving more patients with iron at the baseline are needed to establish which is the most effective drug in reducing iron levels. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures Pepe: Chiesi: Speakers Bureau; ApoPharma Inc.: Speakers Bureau; Novartis: Speakers Bureau.


2018 ◽  
Vol 19 (12) ◽  
pp. 4070 ◽  
Author(s):  
Antoine Finianos ◽  
Charbel Matar ◽  
Ali Taher

With the continuing progress in managing patients with thalassemia, especially in the setting of iron overload and iron chelation, the life span of these patients is increasing, while concomitantly increasing incidences of many diseases that were less likely to show when survival was rather limited. Hepatocellular carcinoma (HCC) is a major life-threatening cancer that is becoming more frequently identified in this population of patients. The two established risk factors for the development of HCC in thalassemia include iron overload and viral hepatitis with or without cirrhosis. Increased iron burden is becoming a major HCC risk factor in this patient population, especially in those in the older age group. As such, screening thalassemia patients using liver iron concentration (LIC) measurement by means of magnetic resonance imaging (MRI) and liver ultrasound is strongly recommended for the early detection of iron overload and for implementation of early iron chelation in an attempt to prevent organ-damaging iron overload and possibly HCC. There remain lacking data on HCC treatment outcomes in patients who have thalassemia. However, a personalized approach tailored to each patient’s comorbidities is essential to treatment success. Multicenter studies investigating the long-term outcomes of currently available therapeutic options in the thalassemia realm, in addition to novel HCC therapeutic targets, are needed to further improve the prognosis of these patients.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Emanuele Angelucci ◽  
Pietro Muretto ◽  
Antonio Nicolucci ◽  
Donatella Baronciani ◽  
Buket Erer ◽  
...  

Abstract To identify the role of iron overload in the natural history of liver fibrosis, we reviewed serial hepatic biopsy specimens taken annually from patients cured of thalassemia major by bone marrow transplantation. The patients underwent transplantation between 1983 and 1989 and did not receive any chelation or antiviral therapy. Two hundred eleven patients (mean age, 8.7 ± 4 years) were evaluated for a median follow-up of 64 months (interquartile range, 43-98 months) by a median number of 5 (interquartile range, 3-6) biopsy samples per patient. Hepatic iron concentration was stratified by tertiles (lower, 0.5-5.6 mg/g; medium, 5.7-12.7 mg/g; upper, 12.8-40.6 mg/g dry weight). Forty-six (22%) patients showed signs of liver fibrosis progression; the median time to progression was 51 months (interquartile range, 36-83 months). In a multivariate Cox proportional hazard model, the risk for fibrosis progression correlated to medium hepatic iron content (hazard rate, 1.9; 95% confidence interval [CI], 0.74-5.0), high hepatic iron content (hazard rate, 8.7; 95% CI, 3.6-21.0) and hepatitis C virus (HCV) infection (hazard rate, 3.1; 95% CI, 1.5-6.5). A striking increase in the risk for progression was found in the presence of both risk factors. None of the HCV-negative patients with hepatic iron content lower than 16 mg/g dry weight showed fibrosis progression, whereas all the HCV-positive patients with hepatic iron concentration greater than 22 mg/g dry weight had fibrosis progression in a minimum follow-up of 4 years. Thus, iron overload and HCV infection are independent risk factors for liver fibrosis progression, and their concomitant presence results in a striking increase in risk.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 618-618
Author(s):  
Janet L. Kwiatkowski ◽  
Mohsen Saleh Elalfy ◽  
Caroline Fradette ◽  
Mona Hamdy ◽  
Amal El-Beshlawy ◽  
...  

Background: Patients with sickle cell disease (SCD) or other rare anemias whose care includes chronic blood transfusions must receive iron chelation to prevent the morbidity of iron overload. Currently, only deferoxamine (DFO) and deferasirox (DFX) are approved chelators in these patient populations. This randomized open-label trial evaluated if the efficacy of deferiprone (DFP) was non-inferior to DFO. DFO was used as the comparator product since DFX was not approved as first-line treatment for SCD at trial initiation. Methods: Participants at 27 sites in 8 countries were randomized in a 2:1 ratio to receive either DFP or DFO for up to 12 months. Those with lower transfusional iron input and/or less severe iron load were prescribed either DFP 25 mg/kg of body weight t.i.d. or DFO 20 mg/kg (children) or 40 mg/kg (adults); those with higher iron input and/or more severe iron load received either DFP 33 mg/kg t.i.d. or DFO up to 40 mg/kg (children) or 50 mg/kg (adults). Dosages could be adjusted over the course of the trial if necessary. Efficacy endpoints were the changes from baseline in liver iron concentration (LIC), cardiac iron, and serum ferritin (SF) at Month 12. The primary endpoint was based on LIC, and for the demonstration of non-inferiority of DFP to DFO, the upper limit of the 95% confidence interval for the difference between treatments had to be no more than 2 mg/g dry weight (dw). All patients had their neutrophil count monitored weekly, whereas other safety assessments and compliance with study therapy were evaluated monthly. Acceptable compliance was defined as taking 80% to 120% of the prescribed dosage. Results: A total of 228 of the targeted 300 patients were dosed with 152 receiving DFP and 76 receiving DFO, to assess non-inferiority. There were no significant differences between the groups in any demographic measures: in each treatment group, 84% of patients had SCD and the remainder had other, rarer forms of transfusion-dependent anemia. Mean age at enrollment was 16.9 years (± 9.6); 53.1% of patients were male; and 77.2% were white, 16.2% black, and 6.6% multi-racial. Over the course of the study, 69% of patients in the DFP group and 79% in the DFO group had acceptable compliance with treatment. Based on the Pocock's α spending function, a more stringent confidence level of 96.01% was applied to the calculation of confidence interval for the evaluation of non-inferiority. For the primary efficacy endpoint, the least squares (LS) mean change in LIC (measured as mg/g dw) was -4.04 for DFP, -4.45 for DFO; the upper limit of the 96.01% confidence interval for the difference was 1.57, thereby demonstrating non-inferiority of DFP to DFO. The upper limit for the subpopulation of patients with SCD also met the non-inferiority criterion. For the secondary endpoints, the change in cardiac iron (measured as ms on MRI T2*, log-transformed) was approximately -0.02 for both; and for SF (measured as μg/L), it was -415 vs. -750 for DFP vs. DFO, respectively. The difference between the groups was not statistically significant for both endpoints. With respect to safety, there was no statistically significant difference between the groups in the overall rate of adverse events (AEs), treatment-related AEs, serious AEs, or withdrawals from the study due to AEs. Agranulocytosis was seen in 1 DFP patient vs. no DFO patients, while events of less severe episodes of neutropenia occurred in 4 vs. 1, respectively. All episodes of agranulocytosis and neutropenia resolved. There was no significant treatment group difference in the rates of any of the serious AEs. Conclusion: The efficacy of DFP for the treatment of iron overload in patients with SCD or other rare anemias is not inferior to that of DFO, as assessed by changes in liver iron concentration. non-inferiority was supported by the endpoints on cardiac iron load and SF. The safety profile of DFP was acceptable and was similar to that previously seen in thalassemia patients, and its use was not associated with unexpected serious adverse events. The results of this study support the use of DFP for the treatment of iron overload in patients with SCD or other rare transfusion-dependent anemias. Note: The authors listed here are presenting these findings on behalf of all investigators who participated in the study. Disclosures Kwiatkowski: Terumo: Research Funding; Imara: Consultancy; bluebird bio, Inc.: Consultancy, Research Funding; Agios: Consultancy; Novartis: Research Funding; Celgene: Consultancy; Apopharma: Research Funding. Fradette:ApoPharma: Employment. Kanter:Sangamo: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; Imara: Consultancy; Guidepoint Global: Consultancy; GLG: Consultancy; Cowen: Consultancy; Jeffries: Consultancy; Medscape: Honoraria; Rockpointe: Honoraria; Peerview: Honoraria; SCDAA: Membership on an entity's Board of Directors or advisory committees; NHLBI: Membership on an entity's Board of Directors or advisory committees; bluebird bio, Inc.: Consultancy; Modus: Consultancy, Honoraria. Tsang:Apotex Inc.: Employment. Stilman:ApoPharma: Employment. Rozova:ApoPharma: Employment. Sinclair:ApoPharma: Employment. Shaw:ApoPharma: Employment. Chan:ApoPharma: Employment. Toiber Temin:ApoPharma: Employment. Lee:ApoPharma: Employment. Spino:ApoPharma: Employment. Tricta:ApoPharma: Employment. OffLabel Disclosure: Deferiprone is an oral iron chelator.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3726-3726
Author(s):  
Peter Nielsen ◽  
Tim H. Bruemmendorf ◽  
Regine Grosse ◽  
Rainer Engelhardt ◽  
Nicolaus Kroeger ◽  
...  

Abstract Patients with myelodysplastic syndromes (MDS), osteomyelofibrosis (OMF), or severe aplastic anemia (SAA) suffer from ineffective erythropoiesis due to pancytopenia, which is treated with red blood cell transfusion leading to iron overload. Especially in low-risk patients with mean survival times of > 5 years, potentially toxic levels of liver iron concentration (LIC) can be reached. We hypothesize that the higher morbidity seen in transfused patients may be influenced by iron toxicity. Following a meeting in Nagasaki 2005, a consensus statement on iron overload in myelodysplastic syndromes has been published, however, there is still no common agreement about the initiation of chelation treatment in MDS patients. In the present study, a total of 67 transfused patients with MDS (n = 20, age: 17 – 75 y), OMF (n = 4, age: 48 – 68 y), SAA (n = 43, age: 5 – 64 y) were measured by SQUID biomagnetic liver susceptometry (BLS) and their liver and spleen volumes were scanned by ultrasound at the Hamburg biosusceptometer. Less than 50 % were treated with DFO. LIC (μg/g-liver wet weight, conversion factor of about 6 for μg/g-dry weight) and volume data were retrospectively analyzed in comparison to ferritin values. Additionally, 15 patients (age: 8 – 55 y) between 1 and 78 months after hematopoietic cell transplantation (HCT) were measured and analyzed. LIC values ranged from 149 to 8404 with a median value of 2705 μg/g-liver, while serum ferritin (SF) concentrations were between 500 and 10396 μg/l with a median ratio of SF/LIC = 0.9 [(μg/l)/(μg/g-liver)] (range: 0.4 to 5.2). The Spearman rank correlation between SF and LIC was found to be highly significant (RS = 0.80, p < 0.0001), however, prediction by the linear regression LIC = (0.83± 0.08)·SF was poor (R2 = 0.5) as found also in other iron overload diseases. Although iron toxicity is a long-term risk factor, progression of hepatic fibrosis has been observed for LIC > 16 mg/g dry weight or 2667 μg/g-liver (Angelucci et al. Blood2002; 100:17–21) within 60 months and significant cardiac iron levels have been observed for LIC > 350 μmol/g or 3258 μg/g-liver (Jensen et al. Blood2003; 101:4632-9). The Angelucci threshold of hepatic fibrosis progression was exceeded by 51 % of our patients, while 39 % were exceeding the Jensen threshold of potential risk of cardiac iron toxicity. The total body iron burden is even higher as more than 50 % of the patients had hepatomegaly (median liver enlargement factor 1.2 of normal). A liver iron concentration of about 3000 μg/g-liver or 18 mg/g-dry weight has to be seen as latest intervention threshold for chelation treatment as MDS patients are affected by more than one risk factor. A more secure intervention threshold would be a LIC of 1000 μg/g-liver or 4 – 6 mg/g-dry weight, corresponding with a ferritin level of 900 μg/l for transfused MDS patients. Such a LIC value is not exceeded by most subjects with heterozygous HFE-associated hemochromatosis and is well tolerated without treatment during life-time. Non-invasive liver iron quantification offers a more reliable information on the individual range of iron loading in MDS which is also important for a more rational indication for a chelation treatment in a given patient.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 179-179
Author(s):  
Christine E. McLaren ◽  
Mary J. Emond ◽  
Pradyumna D. Phatak ◽  
Paul C. Adams ◽  
V. Nathan Subramaniam ◽  
...  

Abstract Variability in the severity of iron overload among homozygotes for the HFE C282Y polymorphism is one of the major problems extant in our understanding of hereditary hemochromatosis (HH). We conducted exome sequencing of DNA from C282Y homozygotes with markedly increased iron stores (cases) and C282Y homozygotes with normal or mildly increased iron stores (controls) to identify rare and common causal variants associated with variability of disease expression in HH. Criteria for cases included serum ferritin >1000 µg/L at diagnosis, and (a) mobilized body iron >10 g by quantitative phlebotomy, and/or (b) hepatic iron concentration >236 µmol/g dry weight. Criteria for controls included (a) serum ferritin <300 µg/L, or (b) age ≥50 y with ≤3.0 g iron removed by phlebotomy or age ≥40 y with ≤2.5 g iron removed by phlebotomy to achieve serum ferritin <50 µg/L. Deep sequencing of the full exome was performed in 33 cases and 14 controls. After quality control filtering, the dataset included 82,068 SNPs and 1,403 insertions/deletions (indels). Our initial analysis tested for differences in the distribution of variants between groups for each gene separately using the Sequence Kernel Association Test (SKAT) that includes rare and common variants but downweights the contribution of common variants to the test statistic. Only non-synonymous variants were included in the by-gene tests. Principal components were constructed from the exome variants to adjust for possible confounding by ancestry and to confirm no ancestral outliers. All study participants were male, and all clustered closely together within a larger group of Europeans in a principal components analysis of ancestry. Mean (SD) ages at presentation were 54 (11.0) y and 56 (9.4) y for cases and controls, respectively. Median serum ferritin was 2788 µg/L in those with increased iron stores and 309 μg/L in those with normal or mildly increased iron stores. The median transferrin saturation (94%) was greater in cases than in the comparison group (70%). In a preliminary analysis, we found 9 genes associated with case-control status. To separate effects of alcohol use and/or alcohol addiction variants, an analysis was conducted to compare the 13 controls and 22 cases who reported never using alcohol or only very light use. The two most significant genes identified in this comparison were GNPAT (p=7.4x10-6) and CDHR2 (p=2.8x10-4). A quantile-quantile (QQ) plot is shown in the Figure, comparing the observed distribution of –(log10p-values) from 10,337 genes to the expected uniform distribution if there were no variants modifying severity of expression, and gives evidence of the effect of the GNPAT gene.Figure 1Figure 1. Inspection of the two variants contributing to the GNPAT by-gene p-value revealed one missense variant (rs11558492) for which 0/13 controls had a polymorphism, while 16/22 cases had at least one missense variant, and one case was homozygous for this missense variant. The latter case presented at the early age of 26 with a serum ferritin of 1762 µg/L, 4+ hepatocellular iron and hepatic iron concentration of 284.4 µmol/g dry weight. GNPAT (aka DHAPAT) mutations/deletions have been found in peroxisomal disease, a class of diseases in which increased hepatic iron is observed (Biochim Biophys Acta 1801:272-280, 2010). GNPAT rs11558492 is common among people of European descent but might interact with aberrant HFE to increase risk of hepatic iron overload. Three rare variants in CDHR2 accounted for its low p-value, having a cumulative frequency of 4/13 among controls and 0/22 among cases: rs115050587, rs752138, rs143224505 with minor allele frequencies, MAF = 1.4%, 4.7% and 0.06%, respectively. The first two polymorphisms are predicted to be highly damaging by PolyPhen2 and the third probably damaging. Expression levels of CDHR2 recently have been associated with increased hepatocyte iron and elevated serum ferritin in liver allograft patients (J Clin Invest 122:368-382, 2012). These data indicate associations between iron status in HFE C282Y homozygotes and genes with previous links to iron overload that may modify severity of disease expression. Of note, the data suggest that more than one modifier gene may be involved in determining severity of disease in HFE C282Y homozygotes. Our results identify candidate genes for expanded studies that would examine their functional significance for iron absorption and metabolism. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 90 (3) ◽  
pp. 994-998 ◽  
Author(s):  
Emanuele Angelucci ◽  
Pietro Muretto ◽  
Guido Lucarelli ◽  
Marta Ripalti ◽  
Donatella Baronciani ◽  
...  

In thalassemia after successful bone marrow transplantation (BMT), iron overload remains an important cause of morbidity. After BMT, patients have normal erythropoiesis capable of producing a hyperplastic response to phlebotomy so that this procedure can be contemplated as a method of mobilizing iron from overloaded tissues. A phlebotomy program (6 mL/kg blood withdrawal at 14-day intervals) was proposed to 48 patients with prolonged follow-up (range, 2 to 7 years) after BMT. Seven patients were not submitted to the program (five because of refusal and two because of reversible side effects). The remaining 41 patients (mean age, 16 ± 2.9 years) were treated for a mean period of 35 ± 18 months. All were evaluated before and after 3 ± 0.6 years of followup. Values are expressed as mean ± standard deviation (SD) or as median with a range (25 to 75 percentile). Serum ferritin decreased from 2,587 (2,129 to 4,817) to 417 (210 to 982) μg/L (P < .0001), total transferrin increased from 2.34 ± 0.37 to 2.7 ± 0.58 g/L (P = .0001), transferrin saturation decreased from 90% ± 14% to 50% ± 29% (P < .0001). Liver iron concentration evaluated on liver biopsy specimens decreased from 20.8 (15.5 to 28.1) to 4.2 (1.6 to 14.6) mg/g dry weight (P < .0001). Aspartate transaminase decreased from 2.7 ± 2 to 1.1 ± 0.6 (P < .0001) and alanine transaminase from 5.2 ± 3.4 to 1.7 ± 1.2 (P < .0001) times the upper level of normality. The Knodell score for liver histological activity decreased from 6.9 ± 3 to 4.9 ± 2.8 (P < .0001). These data indicate that phlebotomy is safe, efficient, and widely applicable to ex-thalassemics after BMT.


Author(s):  
Vipul V. Chemburkar ◽  
Archit A. Gupta ◽  
Devdas S. Shetty ◽  
Ruchi R. Agarwal

Background: Liver iron overload is considered to be the histological hallmark of genetic hemochromatosis. The accurate estimation of iron overload is important to establish the diagnosis of hemochromatosis. The aim of the present study was to estimate T2* liver value, quantify liver iron concentration (in milligram of iron per gram dry weight) and find out the appropriate therapy for patients with iron overload according to severity index.Methods: A cross-sectional observational study was carried out in Department of Radio Diagnosis, at B.Y.L. Nair Hospital and medical college, Mumbai from June 2017 to August 2018. A total of 50 cases were enrolled for the present study.Results: Male predominance (66.0%) was seen. Mean duration of disease among the studied cases was 10.52±6.06 years, with minimum and maximum duration of disease of 1 and 26 years respectively. Eight percent had compliance to visit and treatment among the enrolled cases.Conclusions: MRI was concluded to be potentially useful non-invasive method for evaluating liver iron stones in a wide spectrum of haematological and liver diseases.


2021 ◽  
pp. 028418512110630
Author(s):  
Fanyu Zhao ◽  
Yidi Chen ◽  
Huiting Zhang ◽  
Chenhui Li ◽  
Liling Long

Background Three-dimensional (3D) multi-echo-Dixon (ME-Dixon) and breath-hold T2-corrected multi-echo single-voxel MR spectroscopy (HISTO) can simultaneously quantify liver fat and liver iron. However, their diagnostic efficacy and application scope for quantitative iron in co-existing fatty liver have not been adequately evaluated. Purpose To evaluate the accuracy of ME-Dixon and HISTO for quantitative analysis of hepatic iron in rabbits with iron deposition and fatty liver using liver–iron concentration (LIC) as a reference standard. Material and Methods ME-Dixon, HISTO, and conventional two-dimensional multi-echo gradient echo (GRE) sequences were performed on 42 rabbits. The following parameters were calculated: R2* from ME-Dixon and GRE; proton density fat fraction (PDFF) from the ME-Dixon, HISTO (normal TE range), and HISTO-H (extended TE range); and R2_water from HISTO and HISTO-H. The LIC and liver–fat concentration (LFC) were measured through chemical analysis, and their relationship with the MRI parameters were assessed. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the diagnostic efficiency. Results LIC was significantly correlated with R2_HISTO-H, R2*_Dixon, and R2*_GRE ( r = 0.858, 0.910, 0.931, respectively; P < 0.001) and weakly with R2_HISTO ( r = 0.424; P = 0.008). A strong correlation was also observed between the LFC and PDFF obtained from HISTO, HISTO-H, and ME-Dixon ( r = 0.776, 0.811, 0.888, respectively; P < 0.001). ME-Dixon showed the best performance with moderate iron overload (AUC = 0.983). Conclusion 3D ME-Dixon is useful for quantifying the LIC, especially with co-existing fatty liver. Its diagnostic performance is also superior to that of the HISTO sequence.


Sign in / Sign up

Export Citation Format

Share Document