scholarly journals Inner boundary value problem with an integral condition for fractional diffusion equation

Author(s):  
Ф.М. Лосанова

В данной работе рассматривается нелокальная внутреннекраевая задача для уравнения дробной диффузии с оператором дробного дифференцирования в смысле Римана-Лиувилля с интегральными условиями. Исследуемая задача эквиваленто сведена к системе двух интегральных уравнений Вольтерра второго рода. Доказана теорема существования и единственности решения поставленной задачи. In this paper, we consider a nonlocal interior boundary value problem for the fractional diffusion equation with a fractional differentiation operator in the sense of Riemann-Liouville with integral conditions. The problem under study is equivalently reduced to a system of two Volterra integral equations of the second kind. The theorem of existence and uniqueness of the solution of the posed problem is proved.

Author(s):  
F.M. Losanova ◽  

In this paper, we prove the existence and uniqueness theorem for a nonlocal boundary value problem for the fractional diffusion equation with boundary conditions presented in the form of linear combinations.


Author(s):  
F.G. Khushtova ◽  

In this paper, the equivalence of two forms of representations of the Green's function of the first boundary value problem for the fractional diffusion equation is proved.


Author(s):  
А.К. Баззаев

В работе рассматриваются локально-одномерные схемы для уравнения диффузии дробного порядка с дробной производной в младших членах с граничными условиями первого рода. С помощью принципа максимума получена априорная оценка для решения разностной задачи в равномерной метрике. Доказаны устойчивость и сходимость построенных локально-одномерных схем.


Author(s):  
Yuri Luchko

AbstractIn this paper, some initial-boundary-value problems for the time-fractional diffusion equation are first considered in open bounded n-dimensional domains. In particular, the maximum principle well-known for the PDEs of elliptic and parabolic types is extended for the time-fractional diffusion equation. In its turn, the maximum principle is used to show the uniqueness of solution to the initial-boundary-value problems for the time-fractional diffusion equation. The generalized solution in the sense of Vladimirov is then constructed in form of a Fourier series with respect to the eigenfunctions of a certain Sturm-Liouville eigenvalue problem. For the onedimensional time-fractional diffusion equation $$(D_t^\alpha u)(t) = \frac{\partial } {{\partial x}}\left( {p(x)\frac{{\partial u}} {{\partial x}}} \right) - q(x)u + F(x,t), x \in (0,l), t \in (0,T)$$ the generalized solution to the initial-boundary-value problem with Dirichlet boundary conditions is shown to be a solution in the classical sense. Properties of this solution are investigated including its smoothness and asymptotics for some special cases of the source function.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xueyan Ren ◽  
Guotao Wang ◽  
Zhanbing Bai ◽  
A. A. El-Deeb

AbstractThis study establishes some new maximum principle which will help to investigate an IBVP for multi-index Hadamard fractional diffusion equation. With the help of the new maximum principle, this paper ensures that the focused multi-index Hadamard fractional diffusion equation possesses at most one classical solution and that the solution depends continuously on its initial boundary value conditions.


2021 ◽  
Vol 2 (1) ◽  
pp. 60-75
Author(s):  
Ndolane Sene

In this paper, we propose the approximate solution of the fractional diffusion equation described by a non-singular fractional derivative. We use the Atangana-Baleanu-Caputo fractional derivative in our studies. The integral balance methods as the heat balance integral method introduced by Goodman and the double integral method developed by Hristov have been used for getting the approximate solution. In this paper, the existence and uniqueness of the solution of the fractional diffusion equation have been provided. We analyze the impact of the fractional operator in the diffusion process. We represent graphically the approximate solution of the fractional diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document