Evaluation of a real-time PCR assay for the detection of enteroaggregative E. coli directly in stool specimens

Author(s):  
Ulrich Eigner
2014 ◽  
Vol 77 (2) ◽  
pp. 180-188 ◽  
Author(s):  
PINA M. FRATAMICO ◽  
JAMIE L. WASILENKO ◽  
BRADLEY GARMAN ◽  
DANIEL R. DeMARCO ◽  
STEPHEN VARKEY ◽  
...  

The “top-six” non-O157 Shiga toxin–producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) most frequently associated with outbreaks and cases of foodborne illnesses have been declared as adulterants in beef by the U.S. Department of Agriculture Food Safety and Inspection Service (FSIS). Regulatory testing in beef began in June 2012. The purpose of this study was to evaluate the DuPont BAX System method for detecting these top six STEC strains and strains of E. coli O157:H7. For STEC, the BAX System real-time STEC suite was evaluated, including a screening assay for the stx and eae virulence genes and two panel assays to identify the target serogroups: panel 1 detects O26, O111, and O121, and panel 2 detects O45, O103, O145. For E. coli O157:H7, the BAX System real-time PCR assay for this specific serotype was used. Sensitivity of each assay for the PCR targets was ≥1.23 × 103 CFU/ml in pure culture. Each assay was 100% inclusive for the strains tested (20 to 50 per assay), and no cross-reactivity with closely related strains was observed in any of the assays. The performance of the BAX System methods was compared with that of the FSIS Microbiology Laboratory Guidebook (MLG) methods for detection of the top six STEC and E. coli O157:H7 strains in ground beef and beef trim. Generally, results of the BAX System method were similar to those of the MLG methods for detecting non-O157 STEC and E. coli O157:H7. Reducing or eliminating novobiocin in modified tryptic soy broth (mTSB) may improve the detection of STEC O111 strains; one beef trim sample inoculated with STEC O111 produced a negative result when enriched in mTSB with 8 mg/liter novobiocin but was positive when enriched in mTSB without novobiocin. The results of this study indicate the feasibility of deploying a panel of real-time PCR assay configurations for the detection and monitoring of the top six STEC and E. coli O157:H7 strains in beef. The approach could easily be adapted for additional multiplex assays should regulations expand to include other O serogroups or virulence genes.


2019 ◽  
Vol 14 (10) ◽  
pp. 885-898 ◽  
Author(s):  
Moezi Parichehr ◽  
Kargar Mohammad ◽  
Doosti Abbas ◽  
Khoshneviszadeh Mehdi

Aim: The aim of this study is to formulate a new single nonselective pre-enrichment medium (ELSS) that can support the concurrent growth of four major foodborne pathogens containing E. coli O157: H7, L. monocytogenes, S. aureus and S. enterica serovar Entertidis to develop a multiplex TaqMan Real-time PCR (mRT-PCR). Methods: The mRT-PCR with a new pre-enrichment was carried out for simultaneous detection and quantification of these foodborne bacteria. Results: By using mRT-PCR after 16 h pre-enrichment in ELSS, the detection limit of each pathogen was 1 CFU/25 ml contaminated milk, as well as inclusivity and exclusivity reached 100%. Conclusion: The mRT-PCR assay with pre-enrichment step is a fast and reliable technique for detecting single or multiple pathogens in food products.


2009 ◽  
Vol 6 (3) ◽  
pp. 395-400 ◽  
Author(s):  
Jitender Singh ◽  
Virender K. Batish ◽  
Sunita Grover

2009 ◽  
Vol 72 (10) ◽  
pp. 2195-2197 ◽  
Author(s):  
NEELAM NARANG ◽  
PINA M. FRATAMICO ◽  
GLENN TILLMAN ◽  
KITTY PUPEDIS ◽  
WILLIAM C. CRAY

Escherichia coli O157:H7 is a foodborne pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. Positive identification of E. coli O157:H7 is made using biochemical tests and specific antisera or latex agglutination reagents for the O157 and H7 antigens. However, under certain conditions, some E. coli O157:H7 isolates can appear to be nonreactive with H7 antisera and may require multiple passages on motility medium to restore H7 antigenicity. In this study, we compared the performance of a real-time PCR test with that of a method using latex agglutination reagents to detect the presence of the fliCh7 gene or the H7 antigen, respectively, in E. coli O157:H7 isolates. One hundred twenty-six E. coli strains were tested including reference strains and strains isolated from meat. Lyophilized E. coli O157:H7 isolates were rehydrated and were plated on sheep blood agar without passage on motility medium. All strains were analyzed in parallel by a real-time PCR test targeting the fliCh7 gene and by a latex agglutination test that detects the H7 antigen. The real-time PCR assay showed 100% agreement with the H7 status reported for reference strains and E. coli O157:H7 meat isolates. The latex agglutination test results agreed with the H7 status reported for the E. coli O157:H7 reference strains and non-O157:H7 strains, except for one, E. coli O117:H7; however, 42% (42 of 100) of the E. coli O157:H7 meat isolates tested negative for the H7 antigen by latex agglutination. The real-time fliCh7 PCR test can be used to confirm E. coli O157:H7 strains that are not expressing the immunoreactive H7 antigen.


2015 ◽  
Vol 53 (7) ◽  
pp. 2148-2153 ◽  
Author(s):  
Xuan Qin ◽  
Eileen J. Klein ◽  
Emmanouil Galanakis ◽  
Anita A. Thomas ◽  
Jennifer R. Stapp ◽  
...  

Timely accurate diagnosis of Shiga toxin-producingEscherichia coli(STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targetingstx1,stx2, andrfbEO157with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagicE. coli[EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC.E. coliO157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 usingrfbEO157, and LD-PCR results prompted successful recovery ofE. coliO157 (n= 25) and non-O157 STEC (n= 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid “mega”-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and thatE. coliO157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections.


2018 ◽  
Vol 81 (3) ◽  
pp. 490-496 ◽  
Author(s):  
Yangjin Jung ◽  
Christopher L. Rupert ◽  
Benjamin Chapman ◽  
Anna C. S. Porto Fett ◽  
John B. Luchansky

ABSTRACT In total, 115 marinade samples (58 fresh marinades and 57 spent marinades) were collected over 12 months from specialty retailers (four individual stores) near Raleigh, NC. These marinades were screened for total mesophilic aerobic plate count (M-APC), total psychrotrophic aerobic plate count (P-APC), and Enterobacteriaceae. These marinades were also screened for the seven regulated serogroups of Shiga toxin–producing Escherichia coli. Stores A and B used immersion to marinade raw beef cuts, whereas stores C-1 and C-2 used vacuum tumbling. In general, marinade temperatures at the stores ranged from 1.8 to 6.6°C, and beef cuts were marinated from a few minutes to up to 3 days. Regardless of the process used to marinade meat, levels of M-APC and P-APC in fresh marinades ranged from 3.4 to 4.7 and 1.4 to 1.8 log CFU/mL, respectively, whereas Enterobacteriaceae were not detected in any fresh marinades, even after enrichment. However, levels of M-APC, P-APC, and Enterobacteriaceae in spent marinades collected from stores C-1 and C-2 (ca. 3.6 to 7.1 log CFU/mL) were significantly higher (P < 0.05) compared with levels of these same types of bacteria enumerated from spent marinades collected at stores A and B (ca. ≤0.7 to 4.9 log CFU/mL). None of the 115 marinade samples tested positive for Shiga toxin–producing E. coli by using a BAX system real-time PCR assay. No significant (P > 0.05) association was observed between microbial levels (i.e., M-APC, P-APC, and Enterobacteriaceae) and the temperature or duration of the marination process. Levels of M-APC, P-APC, and Enterobacteriaceae in spent marinades were significantly affected by the marination method (P < 0.05), with levels, in general, being higher in marinades used for tumbling. Thus, retailers must continue to keep marinade solutions and meat at a safe temperature (i.e., ≤4°C) and to properly and frequently sanitize the equipment and environment in both the processing area and deli case.


2015 ◽  
Vol 98 (5) ◽  
pp. 1301-1314 ◽  
Author(s):  
Jonathan Cloke ◽  
Erin Crowley ◽  
Patrick Bird ◽  
Ben Bastin ◽  
Jonathan Flannery ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Escherichia coli O157:H7 Assay is a new real-time PCR assay which has been validated through the AOAC Research Institute (RI) Performance Tested MethodsSM program for raw beef and produce matrixes. This validation study specifically validated the assay with 375 g 1:4 and 1:5 ratios of raw ground beef and raw beef trim in comparison to the U.S. Department of Agriculture, Food Safety Inspection Service, Microbiology Laboratory Guidebook (USDS-FSIS/MLG) reference method and 25 g bagged spinach and fresh apple juice at a ratio of 1:10, in comparison to the reference method detailed in the International Organization for Standardization 16654:2001 reference method. For raw beef matrixes, the validation of both 1:4 and 1:5 allows user flexibility with the enrichment protocol, although which of these two ratios chosen by the laboratory should be based on specific test requirements. All matrixes were analyzed by Thermo Fisher Scientific, Microbiology Division, Vantaa, Finland, and Q Laboratories Inc, Cincinnati, Ohio, in the method developer study. Two of the matrixes (raw ground beef at both 1:4 and 1:5 ratios) and bagged spinach were additionally analyzed in the AOAC-RI controlled independent laboratory study, which was conducted by Marshfield Food Safety, Marshfield, Wisconsin. Using probability of detection statistical analysis, no significant difference was demonstrated by the SureTect kit in comparison to the USDA FSIS reference method for raw beef matrixes, or with the ISO reference method for matrixes of bagged spinach and apple juice. Inclusivity and exclusivity testing was conducted with 58 E. coli O157:H7 and 54 non-E. coli O157:H7 isolates, respectively, which demonstrated that the SureTect assay was able to detect all isolates of E. coli O157:H7 analyzed. In addition, all but one of the nontarget isolates were correctly interpreted as negative by the SureTect Software. The single isolate giving a positive result was an E. coli O157:NM isolate. Nonmotile isolates of E. coli O157 have been demonstrated to still contain the H7 gene; therefore, this result is not unexpected. Robustness testing was conducted to evaluate the performance of the SureTect assay with specific deviations to the assay protocol, which were outside the recommended parameters and which are open to variation. This study demonstrated that the SureTect assay gave reliable performance. A final study to verify the shelf life of the product, under accelerated conditions was also conducted.


Sign in / Sign up

Export Citation Format

Share Document