Agar-based screening of azole resistance in Aspergillus fumigatus

Author(s):  
Jochem B Buil
2021 ◽  
Author(s):  
Duanyong Zhou ◽  
Ruirui Wang ◽  
Xiao Li ◽  
Bin Peng ◽  
Guangzhu Yang ◽  
...  

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
L. Bernal-Martínez ◽  
H. Gil ◽  
O. Rivero-Menéndez ◽  
S. Gago ◽  
M. Cuenca-Estrella ◽  
...  

ABSTRACT The global emergence of azole-resistant Aspergillus fumigatus strains is a growing public health concern. Different patterns of azole resistance are linked to mutations in cyp51A. Therefore, accurate characterization of the mechanisms underlying azole resistance is critical to guide selection of the most appropriate antifungal agent for patients with aspergillosis. This study describes a new sequencing-free molecular screening tool for early detection of the most frequent mutations known to be associated with azole resistance in A. fumigatus. PCRs targeting cyp51A mutations at positions G54, Y121, G448, and M220 and targeting different tandem repeats (TRs) in the promoter region were designed. All PCRs were performed simultaneously, using the same cycling conditions. Amplicons were then distinguished using a high-resolution melting assay. For standardization, 30 well-characterized azole-resistant A. fumigatus strains were used, yielding melting curve clusters for different resistance mechanisms for each target and allowing detection of the most frequent azole resistance mutations, i.e., G54E, G54V, G54R, G54W, Y121F, M220V, M220I, M220T, M220K, and G448S, and the tandem repeats TR34, TR46, and TR53. Validation of the method was performed using a blind panel of 80 A. fumigatus azole-susceptible or azole-resistant strains. All strains included in the blind panel were properly classified as susceptible or resistant with the developed method. The implementation of this screening method can reduce the time needed for the detection of azole-resistant A. fumigatus isolates and therefore facilitate selection of the best antifungal therapy in patients with aspergillosis.


2019 ◽  
Vol 58 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Beatriz Bustamante ◽  
Luis Ricardo Illescas ◽  
Andrés Posadas ◽  
Pablo E Campos

Abstract Azole resistance among Aspergillus fumigatus isolates, which is mainly related to mutations in the cyp51A gene, is a concern because it is rising, worldwide disseminated, and associated with treatment failure and death. Data on azole resistance of aspergillus from Latin American countries is very scarce and do not exist for Peru. Two hundred and seven Aspergillus clinical isolates collected prospectively underwent mycology and molecular testing for specie identification, and 143 isolates were confirmed as A. fumigatus sensu stricto (AFSS). All AFSS were tested for in vitro azole susceptibility, and resistant isolates underwent PCR amplification and sequencing of the whole cyp51A gene and its promoter. The in vitro susceptibility showed a minimal inhibitory concentration (MIC) range, MIC50 and MIC90 of 0.125 to >16, 0.25, and 0.5 μg/ml for itraconazole; 0.25 to 2, 0.5, and 0.5 μg/ml for voriconazole; and 0.003 to 1, 0.06, and 0.125 μg/ml for posaconazole. Three isolates (2%) showed resistance to itraconazole and exhibited different mutations of the cyp51A gene. One isolate harbored the mutation M220K, while a second one exhibited the G54 mutation plus a modification in the cyp51A gene promoter. The third isolate, from an azole naive patient, presented an integration of a 34-bp tandem repeat (TR34) in the promoter region of the gene and a substitution of leucine 98 by histidine (L98H). The three source patients had a diagnosis or suspicion of chronic pulmonary aspergillosis.


2015 ◽  
Vol 11 (4) ◽  
pp. e1004834 ◽  
Author(s):  
Liliana Losada ◽  
Janyce A. Sugui ◽  
Michael A. Eckhaus ◽  
Yun C. Chang ◽  
Stephanie Mounaud ◽  
...  

2012 ◽  
Vol 31 (4) ◽  
pp. S236
Author(s):  
M.-L. Luong ◽  
S. Howard ◽  
S.E. Richardson ◽  
L.G. Singer ◽  
C. Chaparro ◽  
...  

2018 ◽  
Vol 62 (3) ◽  
Author(s):  
Nanbiao Long ◽  
Liping Zeng ◽  
Shanlei Qiao ◽  
Lei Li ◽  
Guowei Zhong

ABSTRACTAntifungal treatment is often ineffectual, partly because of biofilm formation. In this study, by using a combined forward and reverse genetic strategy, we identified that nucleus-localized AfSsn3 and its partner AfSsn8, which constitute a Cdk8-cyclin pair, are required for azole resistance inAspergillus fumigatus. Deletion ofAfssn3led to increased absorption and utilization of glucose and amino acids. Interestingly, absorption and utilization of glucose accelerated the extracellular polysaccharide formation, while utilization of the amino acids serine, threonine, and glycine increased sphingolipid pathway intermediate accumulation. In addition, the absence ofAfssn3induced the activity of the efflux pump proteins. These factors indicate the mature biofilm is responsible for the major mechanisms ofA. fumigatusresistance to azoles in the ΔAfssn3mutant. Collectively, the loss ofAfssn3led to two “barrier” layers between the intracellular and extracellular spaces, which consequently decreased drug penetration into the cell.


2021 ◽  
Author(s):  
Marion Aruanno ◽  
Samantha Gozel ◽  
Isabelle Mouyna ◽  
Josie E Parker ◽  
Daniel Bachmann ◽  
...  

Abstract Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility. This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. Lay Summary A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


Sign in / Sign up

Export Citation Format

Share Document