1008 - Resistance and resilience of the soil microbiome to mechanical compaction under different agricultural management regimes

Author(s):  
Manon Longepierre
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Manon Longepierre ◽  
Franco Widmer ◽  
Thomas Keller ◽  
Peter Weisskopf ◽  
Tino Colombi ◽  
...  

AbstractSoil compaction affects many soil functions, but we have little information on the resistance and resilience of soil microorganisms to this disturbance. Here, we present data on the response of soil microbial diversity to a single compaction event and its temporal evolution under different agricultural management systems during four growing seasons. Crop yield was reduced (up to −90%) in the first two seasons after compaction, but mostly recovered in subsequent seasons. Soil compaction increased soil bulk density (+15%), and decreased air permeability (−94%) and gas diffusion (−59%), and those properties did not fully recover within four growing seasons. Soil compaction induced cropping system-dependent shifts in microbial community structures with little resilience over the four growing seasons. Microbial taxa sensitive to soil compaction were detected in all major phyla. Overall, anaerobic prokaryotes and saprotrophic fungi increased in compacted soils, whereas aerobic prokaryotes and plant-associated fungi were mostly negatively affected. Most measured properties showed large spatial variability across the replicated blocks, demonstrating the dependence of compaction effects on initial conditions. This study demonstrates that soil compaction is a disturbance that can have long-lasting effects on soil properties and soil microorganisms, but those effects are not necessarily aligned with changes in crop yield.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 237
Author(s):  
Johnson N. Nkem ◽  
Lisa Lobry de Bruyn ◽  
Kathleen King

Agricultural intensification practices involve varying degrees of disturbance to the soil ecosystem. This study evaluated six agricultural management regimes with increasing levels of topsoil disturbance, on the composition and abundance of surface-active invertebrates on Vertisols at a sub-catchment scale. Two grazing (native and introduced pastures), and four cropping (combining short and long fallow, with zero and conventional tillage) management regimes were examined. Surface-active invertebrates were collected seasonally with pitfall traps over 2 years (8 seasons), and identified to order, while ants (Formicidae) that comprised 47% of total invertebrates collected, were identified to genera. Season had a significant effect on ant abundance and number of genera recorded with higher abundance and twice the number of genera in summer than all other seasons. Ants, particularly Iridomyrmex, were mainly active in summer, while other invertebrates especially Coleoptera, were more active in winter. Surface-active invertebrates were 30% more abundant in grazing than cropping land use types. Native pasture, with little surface soil disturbance, recorded the highest number of invertebrates, mainly ants, compared to other agricultural management regimes. Coleoptera and Dermaptera were higher in abundance under conventional tillage compared with those agricultural management regimes that disturb the topsoil less. Optimizing surface-active invertebrate activity on Vertisols for most taxa will require reducing topsoil disturbance. However, the research findings also suggest that the impact of agricultural management regimes on invertebrate activity was difficult to predict with any certainty as the three main ant genera, and most abundant invertebrate collected, did not respond in a consistent manner.


Sign in / Sign up

Export Citation Format

Share Document