Dynamic DNA structure states interact with the RNA editing enzyme ADAR1 to modulate fear extinction memory

Author(s):  
Paul Robert Marshall
2020 ◽  
Vol 23 (8) ◽  
pp. 1034-1034
Author(s):  
Paul R. Marshall ◽  
Qiongyi Zhao ◽  
Xiang Li ◽  
Wei Wei ◽  
Ambika Periyakaruppiah ◽  
...  

2020 ◽  
Vol 23 (6) ◽  
pp. 718-729 ◽  
Author(s):  
Paul R. Marshall ◽  
Qiongyi Zhao ◽  
Xiang Li ◽  
Wei Wei ◽  
Ambika Periyakaruppiah ◽  
...  

2019 ◽  
Author(s):  
Paul R. Marshall ◽  
Qiongyi Zhao ◽  
Xiang Li ◽  
Wei Wei ◽  
Abi Malathi ◽  
...  

AbstractRNA modification has recently emerged as an important mechanism underlying gene diversity linked to behavioral regulation. The conversion of adenosine to inosine by the ADAR family of enzymes is a particularly important RNA modification as it impacts the physiological readout of protein-coding genes. However, not all variants of ADAR appear to act solely on RNA. ADAR1 binds directly to DNA when it is in a non-canonical, left handed, “Z” conformation, but little is known about the functional relevance of this interaction. Here we report that ADAR1 binds to Z-DNA in an activity-dependent manner and that fear extinction learning leads to increased ADAR1 occupancy at DNA repetitive elements, with targets adopting a Z-DNA structure at sites of ADAR1 recruitment. Knockdown of ADAR1 leads to an inability to modify a previously acquired memory trace and this is associated with a concomitant change in DNA structure and a decrease in RNA editing. These findings suggest a novel mechanism of learning-induced gene regulation whereby ADAR1 physically interacts with Z-DNA in order to mediate its effect on RNA, and both are required for memory flexibility following fear extinction learning.


2000 ◽  
Vol 275 (35) ◽  
pp. 26828-26833
Author(s):  
Yang-Gyun Kim ◽  
Ky Lowenhaupt ◽  
Stefan Maas ◽  
Alan Herbert ◽  
Thomas Schwartz ◽  
...  
Keyword(s):  
Z Dna ◽  

1999 ◽  
Vol 40 (4) ◽  
pp. 623-635 ◽  
Author(s):  
Ba-Bie Teng ◽  
Scott Ochsner ◽  
Qian Zhang ◽  
Kizhake V. Soman ◽  
Paul P. Lau ◽  
...  

2021 ◽  
Vol 89 (9) ◽  
pp. S176
Author(s):  
Jeehye Seo ◽  
Edward F. Pace-Schott ◽  
Mohammed R. Milad ◽  
Huijin Song ◽  
Anne Germain

2020 ◽  
Vol 127 (4) ◽  
pp. 550-552
Author(s):  
Joseph B. Moore ◽  
Ghazal Sadri ◽  
Annalara G. Fischer ◽  
Tyler Weirick ◽  
Giuseppe Militello ◽  
...  

Structure ◽  
2007 ◽  
Vol 15 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Diana Placido ◽  
Bernard A. Brown ◽  
Ky Lowenhaupt ◽  
Alexander Rich ◽  
Alekos Athanasiadis

2021 ◽  
Vol 5 (3) ◽  
pp. e202101191
Author(s):  
Xinfeng Guo ◽  
Silvia Liu ◽  
Rose Yan ◽  
Vy Nguyen ◽  
Mazen Zenati ◽  
...  

The RNA-sensing signaling pathway has been well studied as an essential antiviral mechanism of innate immunity. However, its role in non-infected cells is yet to be thoroughly characterized. Here, we demonstrated that the RNA sensing signaling pathway also reacts to the endogenous cellular RNAs in endothelial cells (ECs), and this reaction is regulated by the RNA-editing enzyme ADAR1. Cellular RNA sequencing analysis showed that EC RNAs endure extensive RNA editing, especially in the RNA transcripts of short interspersed nuclear elements. The EC-specific deletion of ADAR1 dramatically reduced the editing level on short interspersed nuclear element RNAs, resulting in newborn death in mice with damage evident in multiple organs. Genome-wide gene expression analysis revealed a prominent innate immune activation with a dramatically elevated expression of interferon-stimulated genes. However, blocking the RNA sensing signaling pathway by deletion of the cellular RNA receptor MDA-5 prevented interferon-stimulated gene expression and rescued the newborn mice from death. This evidence demonstrated that the RNA-editing/RNA-sensing signaling pathway dramatically modulates EC function, representing a novel molecular mechanism for the regulation of EC functions.


Sign in / Sign up

Export Citation Format

Share Document