cardiac growth
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 32)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Vol 10 (17) ◽  
pp. 3896
Author(s):  
Amanda Vrselja ◽  
J. Jane Pillow ◽  
M. Jane Black

Preterm birth coincides with a key developmental window of cardiac growth and maturation, and thus has the potential to influence long-term cardiac function. Individuals born preterm have structural cardiac remodelling and altered cardiac growth and function by early adulthood. The evidence linking preterm birth and cardiovascular disease in later life is mounting. Advances in the perinatal care of preterm infants, such as glucocorticoid therapy, have improved survival rates, but at what cost? This review highlights the short-term and long-term impact of preterm birth on the structure and function of the heart and focuses on the impact of antenatal and postnatal glucocorticoid treatment on the immature preterm heart.


2021 ◽  
Vol 157 ◽  
pp. 31-44
Author(s):  
Mary N. Latimer ◽  
Ravi Sonkar ◽  
Sobuj Mia ◽  
Isabelle Robillard Frayne ◽  
Karen J. Carter ◽  
...  

Immunity ◽  
2021 ◽  
Author(s):  
Rysa Zaman ◽  
Homaira Hamidzada ◽  
Crystal Kantores ◽  
Anthony Wong ◽  
Sarah A. Dick ◽  
...  

Author(s):  
Jack R.T. Darby ◽  
Jacky Chiu ◽  
Timothy R.H. Regnault ◽  
Janna L. Morrison

Abstract There is a strong relationship between low birth weight (LBW) and an increased risk of developing cardiovascular disease (CVD). In postnatal life, LBW offspring are becoming more commonly exposed to the additional independent CVD risk factors, such as an obesogenic diet. However, how an already detrimentally programmed LBW myocardium responds to a secondary insult, such as an obesogenic diet (western diet; WD), during postnatal life is ill defined. Herein, we aimed to determine in a pre-clinical guinea pig model of CVD, both the independent and interactive effects of LBW and a postnatal WD on the molecular pathways that regulate cardiac growth and metabolism. Uterine artery ablation was used to induce placental insufficiency (PI) in pregnant guinea pigs to generate LBW offspring. Normal birth weight (NBW) and LBW offspring were weaned onto either a Control diet or WD. At ˜145 days after birth (young adulthood), male and female offspring were humanely killed, the heart weighed and left ventricle tissue collected. The mRNA expression of signalling molecules involved in a pathological hypertrophic and fibrotic response was increased in the myocardium of LBW male, but not female offspring, fed a WD as was the mRNA expression of transcription factors involved in fatty acid oxidation. The mRNA expression of glucose transporters was downregulated by LBW and WD in male, but not female hearts. This study has highlighted a sexually dimorphic cardiac pathological hypertrophic and fibrotic response to the secondary insult of postnatal WD consumption in LBW offspring.


Author(s):  
Rongrong Gao ◽  
Lijun Wang ◽  
Yihua Bei ◽  
Xiaodong Wu ◽  
Jiaqi Wang ◽  
...  

Background: Exercise training's benefits in cardiovascular system have been well accepted, however, the underlying mechanism remains to be explored. Here, we report the initial functional characterization of an exercise-induced cardiac physiological hypertrophy associated novel lncRNA. Methods: Using lncRNA microarray profiling, we identified lncRNAs in contributing the modulation of exercise-induced cardiac growth that we termed Cardiac Physiological hypertrophy associated regulator (CPhar). Mice with Adeno-associated virus serotype 9 (AAV9) driving CPhar overexpression and knockdown were used in in-vivo experiments. Swim training was used to induce physiological cardiac hypertrophy in mice and ischemia reperfusion injury (IR/I) surgery was conducted to investigate the protective effects of CPhar in mice. To investigate the mechanisms of CPhar's function, we performed various analysis including RTqPCR, western blot, histology, cardiac function (by echocardiography), functional rescue experiments, mass spectrometry, in vitro RNA transcription, RNA pull down, RNA immunoprecipitation, chromatin immunoprecipitation assay, luciferase reporter assay, and coimmunoprecipitation assays. Results: We screened the lncRNAs in contributing the modulation of exercise-induced cardiac growth via lncRNA microarray profiling and found that CPhar was increased with exercise and was necessary for exercise-induced physiological cardiac growth. Gain- and loss- of function of CPhar regulated the expression of proliferation markers, hypertrophy, and apoptosis in cultured neonatal mouse cardiomyocytes (NMCMs). Overexpression of CPhar prevented myocardial ischemia reperfusion injury and cardiac dysfunction in vivo . We identified DDX17 as a binding partner of CPhar in regulating CPhar downstream factor ATF7 by sequestering C/EBPβ. Conclusions: Our study of this lncRNA CPhar provides new insights into the regulation of exercise-induced cardiac physiological growth, demonstrating the cardioprotective role of CPhar in the heart, as well as expanding our mechanistic understanding of lncRNA function.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emily A. Scarborough ◽  
Keita Uchida ◽  
Maria Vogel ◽  
Noa Erlitzki ◽  
Meghana Iyer ◽  
...  

AbstractHypertension, exercise, and pregnancy are common triggers of cardiac remodeling, which occurs primarily through the hypertrophy of individual cardiomyocytes. During hypertrophy, stress-induced signal transduction increases cardiomyocyte transcription and translation, which promotes the addition of new contractile units through poorly understood mechanisms. The cardiomyocyte microtubule network is also implicated in hypertrophy, but via an unknown role. Here, we show that microtubules are indispensable for cardiac growth via spatiotemporal control of the translational machinery. We find that the microtubule motor Kinesin-1 distributes mRNAs and ribosomes along microtubule tracks to discrete domains within the cardiomyocyte. Upon hypertrophic stimulation, microtubules redistribute mRNAs and new protein synthesis to sites of growth at the cell periphery. If the microtubule network is disrupted, mRNAs and ribosomes collapse around the nucleus, which results in mislocalized protein synthesis, the rapid degradation of new proteins, and a failure of growth, despite normally increased translation rates. Together, these data indicate that mRNAs and ribosomes are actively transported to specific sites to facilitate local translation and assembly of contractile units, and suggest that properly localized translation – and not simply translation rate – is a critical determinant of cardiac hypertrophy. In this work, we find that microtubule based-transport is essential to couple augmented transcription and translation to productive cardiomyocyte growth during cardiac stress.


2021 ◽  
Vol 120 (3) ◽  
pp. 103a
Author(s):  
Keita Uchida ◽  
Emily Scarborough ◽  
Maria Vogel ◽  
Benjamin L. Prosser ◽  
Izhak Kehat

2021 ◽  
Author(s):  
Paige DeBenedittis ◽  
Anish Karpurapu ◽  
Albert Henry ◽  
Michael C Thomas ◽  
Timothy J McCord ◽  
...  

ABSTRACTInnate heart regeneration in zebrafish and neonatal mammals requires multiple cell types, such as epicardial cells, nerves, and macrophages, to enable proliferation of spared cardiomyocytes (CMs). How these cells interact to create growth niches is unclear. Here we profile proliferation kinetics of cardiac endothelial cells (CECs) and CMs in the neonatal mouse heart and find that CM and CEC expansion is spatiotemporally coupled. We show that coupled myovascular expansion during cardiac growth or regeneration is dependent upon VEGF-VEGFR2 signaling, as genetic deletion of Vegfr2 from CECs or inhibition of VEGFA abrogates both CEC and CM proliferation. Repair of cryoinjury, a model of incomplete regeneration, displays poor spatial coupling of CEC and CM proliferation. Boosting CEC density in the border zone by injection of virus encoding Vegfa enhances CM proliferation and the efficacy of heart regeneration, suggesting that revascularization strategies to increase CEC numbers may be an important adjunct for approaches designed to promote CM proliferation after injury. Finally, we use a human Mendelian randomization study to demonstrate that circulating VEGFA levels are positively associated with higher myocardial mass among healthy individuals, suggesting similar effects on human cardiac growth. Our work demonstrates the importance of coupled CEC and CM expansion for cardiomyogenesis and reveals the presence of a myovascular niche that underlies cardiac growth and regeneration.


Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 705-711 ◽  
Author(s):  
Xiaolei Liu ◽  
Ester De la Cruz ◽  
Xiaowu Gu ◽  
Laszlo Balint ◽  
Michael Oxendine-Burns ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document