scholarly journals ADAR1 RNA editing regulates endothelial cell functions via the MDA-5 RNA sensing signaling pathway

2021 ◽  
Vol 5 (3) ◽  
pp. e202101191
Author(s):  
Xinfeng Guo ◽  
Silvia Liu ◽  
Rose Yan ◽  
Vy Nguyen ◽  
Mazen Zenati ◽  
...  

The RNA-sensing signaling pathway has been well studied as an essential antiviral mechanism of innate immunity. However, its role in non-infected cells is yet to be thoroughly characterized. Here, we demonstrated that the RNA sensing signaling pathway also reacts to the endogenous cellular RNAs in endothelial cells (ECs), and this reaction is regulated by the RNA-editing enzyme ADAR1. Cellular RNA sequencing analysis showed that EC RNAs endure extensive RNA editing, especially in the RNA transcripts of short interspersed nuclear elements. The EC-specific deletion of ADAR1 dramatically reduced the editing level on short interspersed nuclear element RNAs, resulting in newborn death in mice with damage evident in multiple organs. Genome-wide gene expression analysis revealed a prominent innate immune activation with a dramatically elevated expression of interferon-stimulated genes. However, blocking the RNA sensing signaling pathway by deletion of the cellular RNA receptor MDA-5 prevented interferon-stimulated gene expression and rescued the newborn mice from death. This evidence demonstrated that the RNA-editing/RNA-sensing signaling pathway dramatically modulates EC function, representing a novel molecular mechanism for the regulation of EC functions.

2017 ◽  
Vol 114 (50) ◽  
pp. 13296-13301 ◽  
Author(s):  
Violeta Rayon-Estrada ◽  
Dewi Harjanto ◽  
Claire E. Hamilton ◽  
Yamina A. Berchiche ◽  
Emily Conn Gantman ◽  
...  

Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3′UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sarah N Deffit ◽  
Brian A Yee ◽  
Aidan C Manning ◽  
Suba Rajendren ◽  
Pranathi Vadlamani ◽  
...  

ADAR proteins alter gene expression both by catalyzing adenosine (A) to inosine (I) RNA editing and binding to regulatory elements in target RNAs. Loss of ADARs affects neuronal function in all animals studied to date. Caenorhabditis elegans lacking ADARs exhibit reduced chemotaxis, but the targets responsible for this phenotype remain unknown. To identify critical neural ADAR targets in C. elegans, we performed an unbiased assessment of the effects of ADR-2, the only A-to-I editing enzyme in C. elegans, on the neural transcriptome. Development and implementation of publicly available software, SAILOR, identified 7361 A-to-I editing events across the neural transcriptome. Intersecting the neural editome with adr-2 associated gene expression changes, revealed an edited mRNA, clec-41, whose neural expression is dependent on deamination. Restoring clec-41 expression in adr-2 deficient neural cells rescued the chemotaxis defect, providing the first evidence that neuronal phenotypes of ADAR mutants can be caused by altered gene expression.


2019 ◽  
Vol 14 (6) ◽  
pp. 480-490 ◽  
Author(s):  
Tuncay Bayrak ◽  
Hasan Oğul

Background: Predicting the value of gene expression in a given condition is a challenging topic in computational systems biology. Only a limited number of studies in this area have provided solutions to predict the expression in a particular pattern, whether or not it can be done effectively. However, the value of expression for the measurement is usually needed for further meta-data analysis. Methods: Because the problem is considered as a regression task where a feature representation of the gene under consideration is fed into a trained model to predict a continuous variable that refers to its exact expression level, we introduced a novel feature representation scheme to support work on such a task based on two-way collaborative filtering. At this point, our main argument is that the expressions of other genes in the current condition are as important as the expression of the current gene in other conditions. For regression analysis, linear regression and a recently popularized method, called Relevance Vector Machine (RVM), are used. Pearson and Spearman correlation coefficients and Root Mean Squared Error are used for evaluation. The effects of regression model type, RVM kernel functions, and parameters have been analysed in our study in a gene expression profiling data comprising a set of prostate cancer samples. Results: According to the findings of this study, in addition to promising results from the experimental studies, integrating data from another disease type, such as colon cancer in our case, can significantly improve the prediction performance of the regression model. Conclusion: The results also showed that the performed new feature representation approach and RVM regression model are promising for many machine learning problems in microarray and high throughput sequencing analysis.


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 15 ◽  
Author(s):  
Jiajia Chang ◽  
Xiaoqin He ◽  
Jingmei Hu ◽  
Peter Muiruri Kamau ◽  
Ren Lai ◽  
...  

Prokineticins are highly conserved small peptides family expressed in all vertebrates, which contain a wide spectrum of functions. In this study, a prokineticin homolog (Bv8-AJ) isolated from the venom of frog Amolops jingdongensis was fully characterized. Bv8-AJ accelerated full-thickness wounds healing of mice model by promoting the initiation and the termination of inflammatory phase. Moreover, Bv8-AJ exerted strong proliferative effect on fibroblasts and keratinocytes isolated from newborn mice by activating interleukin (IL)-1 production. Our findings indicate that Bv8 is a potent wound healing regulator and may reveal the mechanism of rapid wound-healing in amphibian skins.


2000 ◽  
Vol 275 (35) ◽  
pp. 26828-26833
Author(s):  
Yang-Gyun Kim ◽  
Ky Lowenhaupt ◽  
Stefan Maas ◽  
Alan Herbert ◽  
Thomas Schwartz ◽  
...  
Keyword(s):  
Z Dna ◽  

1999 ◽  
Vol 40 (4) ◽  
pp. 623-635 ◽  
Author(s):  
Ba-Bie Teng ◽  
Scott Ochsner ◽  
Qian Zhang ◽  
Kizhake V. Soman ◽  
Paul P. Lau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document