scholarly journals Genome Wide Characterization & Phylogenetic Analysis of TNF Genes in Homo Sapiens

Author(s):  
Saif S ◽  
◽  
Mazhar MW ◽  
Sikandar M ◽  
Waqas N ◽  
...  

Tumor Necrosis Factor is very important inflammatory signaling unit that do an important role in immune system. It functions by attachment and stimulation of different receptor’s Cysteine Rich Domains (CDRs). A number of TNF receptors mediated factors have been identified having a major role in signal transduction pathways of TNF gene family. There are about 18 TNF homologues that are identified as a major cause of many disorders like cancer, Diabetes, AIDS and many other lethal inflammations. In this study the genome wide identification of TNF gene was done. Different tools and databases were used. Identification of conserved domains was done by using pfam and homology analysis showed that the TNF might be a member of TRAFs superfamily. Structural analysis of gene showed the number of introns and exons by a three-dimensional structure of TNF gene. The TNF gene family's exon-intron structure was found to be very similar in this study. The distribution of genes across chromosomes, on the other hand, was extremely varied. Collectively, the newly discovered genes can provide a wealth of information for manipulating the TNF genome to develop drugs and strategies to treat a variety of diseases.

1989 ◽  
Vol 9 (1) ◽  
pp. 252-258 ◽  
Author(s):  
J Horiguchi ◽  
D Spriggs ◽  
K Imamura ◽  
R Stone ◽  
R Luebbers ◽  
...  

The treatment of human HL-60 promyelocytic leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcript. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNF mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase A2 blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B4. In contrast, the cyclooxygenase metabolite prostaglandin E2 inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B4 and prostaglandin E2.


2000 ◽  
Vol 20 (3) ◽  
pp. 912-918 ◽  
Author(s):  
Patricia Greenwel ◽  
Shizuko Tanaka ◽  
Dmitri Penkov ◽  
Wen Zhang ◽  
Michelle Olive ◽  
...  

ABSTRACT Extracellular matrix (ECM) formation and remodeling are critical processes for proper morphogenesis, organogenesis, and tissue repair. The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) inhibits ECM accumulation by stimulating the expression of matrix proteolytic enzymes and by downregulating the deposition of structural macromolecules such as type I collagen. Stimulation of ECM degradation has been linked to prolonged activation of jun gene expression by the cytokine. Here we demonstrate that TNF-α inhibits transcription of the gene coding for the α2 chain of type I collagen [α2(I) collagen] in cultured fibroblasts by stimulating the synthesis and binding of repressive CCAAT/enhancer proteins (C/EBPs) to a previously identified TNF-α-responsive element. This conclusion was based on the concomitant identification of C/EBPβ and C/EBPδ as TNF-α-induced factors by biochemical purification and expression library screening. It was further supported by the ability of the C/EBP-specific dominant-negative (DN) protein to block TNF-α inhibition of α2(I) collagen but not TNF-α stimulation of the MMP-13 protease. The DN protein also blocked TNF-α downregulation of the gene coding for the α1 chain of type I collagen. The study therefore implicates repressive C/EBPs in the TNF-α-induced signaling pathway that controls ECM formation and remodeling.


2015 ◽  
Vol 89 (23) ◽  
pp. 12118-12130 ◽  
Author(s):  
Ferdinand Roesch ◽  
Léa Richard ◽  
Réjane Rua ◽  
Françoise Porrot ◽  
Nicoletta Casartelli ◽  
...  

ABSTRACTThe HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the cell cycle in the G2phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the production of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion by infected lymphocytes.De novoproduction of Vpr is required for this effect. Vpr mutants known to be defective for G2cell cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-1-infected cells triggers NF-κB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus, the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replicationin vivo.IMPORTANCEThe role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogenesis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and antiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1 and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates TNF production and helps clarify the role of Vpr in innate immune responses and inflammation.


1989 ◽  
Vol 9 (1) ◽  
pp. 252-258
Author(s):  
J Horiguchi ◽  
D Spriggs ◽  
K Imamura ◽  
R Stone ◽  
R Luebbers ◽  
...  

The treatment of human HL-60 promyelocytic leukemia cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcript. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNF mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase A2 blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B4. In contrast, the cyclooxygenase metabolite prostaglandin E2 inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B4 and prostaglandin E2.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0124809 ◽  
Author(s):  
Koji Kawata ◽  
Atsushi Iwai ◽  
Daisuke Muramatsu ◽  
Shiho Aoki ◽  
Hirofumi Uchiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document