scholarly journals Anti-Inflammatory Activity of Flavonoids: Potential Role against COVID-19

Author(s):  
Muschietti LV ◽  

The Coronavirus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spread all over the globe and emerged as one of the most threatening transmissible disease. The infection can cause an acute respiratory distress syndrome associated with a systemic immune response and inflammation. Up to now, there is no specific drugs available for its treatment. Flavonoids are important natural polyphenolic compounds widely distributed in the plant kingdom. It has been demonstrated the potential role of these metabolites in the modulation of signaling pathways particularly those related to inflammation and immunity. This review focuses on the anti-inflammatory activity of flavonoids and their effectiveness as possible therapeutic options to fight SARS-COV-2 infection.

2020 ◽  
Author(s):  
Huang-Ping Yu ◽  
Fu-Chao Liu ◽  
Ani Umoro ◽  
Zih-Chan Lin ◽  
Ahmed O. Elzoghby ◽  
...  

Abstract Background: Oleic acid (OA) is reported to show anti-inflammatory activity toward activated neutrophils. It is also an important material in nanoparticles for increased stability and cellular internalization. We aimed to evaluate the anti-inflammatory activity of injectable OA-based nanoparticles for treating lung injury. Different sizes of nanocarriers were prepared to explore the effect of nanoparticulate size on inflammation inhibition. Results: The nanoparticles were fabricated with the mean diameters of 105, 153, and 225 nm. The nanocarriers were ingested by isolated human neutrophils during a 5-min period, with the smaller sizes exhibiting greater uptake. The size reduction led to the decrease of cell viability and the intracellular calcium level. The OA-loaded nanosystems dose-dependently suppressed the superoxide anion and elastase produced by the stimulated neutrophils. The inhibition level was comparable for the nanoparticles of different sizes. In the ex vivo biodistribution study, the pulmonary accumulation of nanoparticles increased following the increase of particle size. The nanocarriers were mainly excreted by the liver and bile clearance. Mice were exposed to intratracheal lipopolysaccharide (LPS) to induce acute respiratory distress syndrome (ARDS), like lung damage. The lipid-based nanocarriers mitigated myeloperoxidase (MPO) and cytokines more effectively as compared to OA solution. The larger nanoparticles displayed greater reduction on MPO, TNF-α, and IL-6 than the smaller ones. The histology confirmed the decreased pulmonary neutrophil recruitment and lung-architecture damage after intravenous administration of larger nanoparticles. Conclusions: Nanoparticulate size, an essential property governing the anti-inflammatory effect and lung-injury therapy, had different effects on activated neutrophil inhibition and in vivo therapeutic efficacy.


Author(s):  
Shaul Lev ◽  
Pierre Singer

Enteral nutrition (EN) is an integral part of the patient care in the intensive care unit (ICU) in order to maintain gut integrity, to modulate stress and the systemic immune response, and to attenuate disease severity. The timing of commencing EN in critically-ill patients depends on patient status and should be initiated as soon as the patient is stabilized. The energy and protein targets should be estimated and the feed prescription should match the nutritional target. The rate of EN dose increment or the addition of supplemental parenteral nutrition (PN) to reach the nutritional target is still debatable and ranges between 3 days (ESPEN approach) and up to 8 days (ASPEN approach). Micronutrients should be supplemented to all patients. The role of pharmaconutrition is controversial due to recent negative trials, but the use of EN with supplemental omega-3 and GLA for acute respiratory distress syndrome patients is still advocated by ESPEN and ASPEN guidelines.


2019 ◽  
Author(s):  
Jia-You Fang ◽  
Huang-Ping Yu ◽  
Fu-Chao Liu ◽  
Ani Umoro ◽  
Zih-Chan Lin ◽  
...  

Abstract Background: Oleic acid (OA) is reported to show anti-inflammatory activity toward activated neutrophils. It is also an important material in nanoparticles for increased stability and cellular internalization. We aimed to evaluate the anti-inflammatory activity of injectable OA-based nanoparticles for treating lung injury. Different sizes of nanocarriers were prepared to explore the effect of nanoparticulate size on inflammation inhibition. Results: The nanoparticles were fabricated with the mean diameters of 105, 153, and 225 nm. The nanocarriers were ingested by isolated human neutrophils during a 5-min period, with the smaller sizes exhibiting greater uptake. The size reduction led to the decrease of cell viability and the intracellular calcium level. The OA-loaded nanosystems dose-dependently suppressed the superoxide anion and elastase produced by the stimulated neutrophils. The inhibition level was comparable for the nanoparticles of different sizes. In the in vivo biodistribution study, the pulmonary accumulation of nanoparticles increased following the increase of particle size. The nanocarriers were mainly excreted by the liver and bile clearance. Mice were exposed to intratracheal lipopolysaccharide (LPS) to induce acute respiratory distress syndrome (ARDS), like lung damage. The lipid-based nanocarriers mitigated myeloperoxidase (MPO) and cytokines more effectively as compared to OA solution. The larger nanoparticles displayed greater reduction on MPO, TNF-α, and IL-6 than the smaller ones. The histology confirmed the decreased pulmonary neutrophil recruitment and lung-architecture damage after intravenous administration of larger nanoparticles. Conclusions: Nanoparticulate size, an essential property governing the anti-inflammatory effect and lung-injury therapy, had different effects on activated neutrophil inhibition and in vivo therapeutic efficacy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hayder M. Al-kuraishy ◽  
Ali Ismail Al-Gareeb ◽  
Gomaa Mostafa-Hedeab ◽  
Keneth Iceland Kasozi ◽  
Gerald Zirintunda ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative virus in the development of coronavirus disease 2019 (Covid-19) pandemic. Respiratory manifestations of SARS-CoV-2 infection such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) leads to hypoxia, oxidative stress, and sympatho-activation and in severe cases leads to sympathetic storm (SS). On the other hand, an exaggerated immune response to the SARS-CoV-2 invasion may lead to uncontrolled release of pro-inflammatory cytokine development of cytokine storm (CS). In Covid-19, there are interactive interactions between CS and SS in the development of multi-organ failure (MOF). Interestingly, cutting the bridge between CS and SS by anti-inflammatory and anti-adrenergic agents may mitigate complications that are induced by SARS-CoV-2 infection in severely affected Covid-19 patients. The potential mechanisms of SS in Covid-19 are through different pathways such as hypoxia, which activate the central sympathetic center through carotid bodies chemosensory input and induced pro-inflammatory cytokines, which cross the blood-brain barrier and activation of the sympathetic center. β2-receptors signaling pathway play a crucial role in the production of pro-inflammatory cytokines, macrophage activation, and B-cells for the production of antibodies with inflammation exacerbation. β-blockers have anti-inflammatory effects through reduction release of pro-inflammatory cytokines with inhibition of NF-κB. In conclusion, β-blockers interrupt this interaction through inhibition of several mediators of CS and SS with prevention development of neural-cytokine loop in SARS-CoV-2 infection. Evidence from this study triggers an idea for future prospective studies to confirm the potential role of β-blockers in the management of Covid-19.


Sign in / Sign up

Export Citation Format

Share Document