Satellite traceology: experience of using in the interests of mammalogy for protection of ice-associated marine mammals

2014 ◽  
Vol 179 (4) ◽  
pp. 138-157
Author(s):  
Vladimir V. Melentyev ◽  
Vladimir I. Chernook ◽  
Konstantin V. Melentyev ◽  
Alexandr A. Startsev ◽  
Tatiyana A. Zakharova

Advanced technology of satellite traceology is presented on the base of using the synthetic aperture radar (SAR) with high space and deep resolution installed for the first time onboard Soviet space station Almaz and now functioning successfully onboard the satellites Envisat and RADARSAT. The SAR traceology is the central issue of the satellite eco-criminology and concerns to theory of the traces formation, variability, and preservation in undamaged state. Ships coordinates, their traces and complexity of ice routing are fixed by the method of satellite charting, and their possible influence on ice-associated marine mammals is assessed. Numerous examples of SAR satellite control on navigation in stormy weather and ships’ presence in ice with different compactness, origin and age are overviewed, as well as impact of travel facilities on ice-associated animals welfare. Some incidents potentially dangerous for marine mammals are considered for the Gulf of Finland (Baltic Sea). Parameters of the ice cover, as openings, large fractures, and polynyas made by icebreakers in this area were determined on the base of the satellite SAR data, comprehensive digital ice maps with scheme of real ships’ routes in the ice were prepared, and the routes correspondence with ESIMO demands was assessed. The satellite SAR survey in the Kandalaksha Bay (White Sea) allowed to fix that winter navigation in the White Sea provoked formation of fractures and polynyas and reduced the sea ice area suitable for reproduction of greenland seals. For validation of this situation, airborne control was organized aboard the aircraft L-410 «Nord» that provided panoramic and IR images of ship channel through the rookeries of the seals in time of their reproduction. Besides, the aircraft made observations of pacific walruses behavior in the Bering Sea which were superposed with the satellite SAR and passive microwave survey in frame of the project «Pacific Walrus». Traceological control of the sea ice in the Anadyr Bay (Bering Sea) allowed to determine the size of openings in the ice and to assess the influence of tide and wind on welfare of ice-associated marine mammals. Some cases of infringement the regulation of navigation were revealed by means of the satellite SAR traceology.

2012 ◽  
Vol 69 (7) ◽  
pp. 1180-1193 ◽  
Author(s):  
Zachary W. Brown ◽  
Kevin R. Arrigo

Abstract Brown, Z. W., and Arrigo, K. R. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. – ICES Journal of Marine Science, 69: . Satellite remote sensing data were used to examine recent trends in sea-ice cover and net primary productivity (NPP) in the Bering Sea and Arctic Ocean. In nearly all regions, diminished sea-ice cover significantly enhanced annual NPP, indicating that light-limitation predominates across the seasonally ice-covered waters of the northern hemisphere. However, long-term trends have not been uniform spatially. The seasonal ice pack of the Bering Sea has remained consistent over time, partially because of winter winds that have continued to carry frigid Arctic air southwards over the past six decades. Hence, apart from the “Arctic-like” Chirikov Basin (where sea-ice loss has driven a 30% increase in NPP), no secular trends are evident in Bering Sea NPP, which averaged 288 ± 26 Tg C year−1 over the satellite ocean colour record (1998–2009). Conversely, sea-ice cover in the Arctic Ocean has plummeted, extending the open-water growing season by 45 d in just 12 years, and promoting a 20% increase in NPP (range 441–585 Tg C year−1). Future sea-ice loss will likely stimulate additional NPP over the productive Bering Sea shelves, potentially reducing nutrient flux to the downstream western Arctic Ocean.


1985 ◽  
Vol 90 (C2) ◽  
pp. 3185 ◽  
Author(s):  
Robin D. Muench ◽  
James D. Schumacher

2021 ◽  
Author(s):  
David Lipson ◽  
Kim Reasor ◽  
Kååre Sikuaq Erickson

<p>In this project we analyze artwork and recorded statements of 5<sup>th</sup> grade students from the community of Utqiaġvik, Alaska, who participated in a science-art outreach activity. The team consisted of a scientist (Lipson), an artist (Reasor) and an outreach specialist (Erickson) of Inupiat heritage from a village in Alaska. We worked with four 5th grade classes of about 25 students each at Fred Ipalook Elementary. The predominantly Inupiat people of Utqiaġvik are among those who will be most impacted by climate change and the loss of Arctic sea ice in the near future. Subsistence hunting of marine mammals associated with sea ice is central to the Inupiat way of life. Furthermore, their coastal homes and infrastructure are increasingly subject to damage from increased wave action on ice-free Beaufort and Chukchi Seas. While the people of this region are among the most directly vulnerable to climate change, the teachers reported that the subject is not generally covered in the elementary school curriculum.</p><p>The scientist and the local outreach specialist gave a short presentation about sea ice and climate change in the Arctic, with emphasis on local impacts to hunting and infrastructure. We then showed the students a large poster of historical and projected sea ice decline, and asked the students to help us fill in the white space beneath the lines. The artist led the children in making small paintings that represent things that are important to their lives in Utqiaġvik (they were encouraged to paint animals, but they were free to do whatever they wanted). We returned to the class later that week and had each student briefly introduce themselves and their painting, and place it on the large graph of sea ice decline, which included the dire predictions of the RCP8.5 scenario. Then we added the more hopeful RCP2.6 scenario to end on a positive note.</p><p>Common themes expressed in the students’ artwork included subsistence hunting, other aspects of traditional Inupiat culture, nature and family. Modern themes such as sports and Pokémon were also common. The students reacted to the topic of climate change with pictures of whales, polar bears and other animals, and captions such as “Save the world/ice/animals.” There were several paintings showing unsuccessful hunts for whales or seals. Some students displayed an understanding of ecosystem science in their recorded statements. For example, a student who painted the sun and another who painted a krill both succinctly described energy flow in food webs that support the production of whales (for example, “I drew krill because without krill there wouldn’t be whales”). Some of the students described the consequences of sea ice loss to local wildlife with devastating succinctness (sea ice is disappearing and polar bears will go extinct). The overall sense was that the children had a strong grasp of the potential consequences of climate change to their region and way of life.</p>


Sign in / Sign up

Export Citation Format

Share Document