pacific walrus
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 2)

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255686
Author(s):  
Chelsea W. Koch ◽  
Lee W. Cooper ◽  
Ryan J. Woodland ◽  
Jacqueline M. Grebmeier ◽  
Karen E. Frey ◽  
...  

The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus (Odobenus rosmarus divergens). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes (δ15N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chadwick V. Jay ◽  
Sara J. Iverson ◽  
Anthony S. Fischbach

The variability of lipid content and fatty acid (FA) composition across blubber depth and body sites are important considerations for condition and diet studies of marine mammals. We investigated lipid and FA variability among inner and outer blubber layers, three body sites, four study years, and lactation status of adult female Pacific walruses (Odobenus rosmarus divergens) using blubber samples collected from subsistence-harvested walruses in spring 2007–2010. Percent lipid content did not differ between the inner and outer blubber layers at the rump, flank, or sternum of walruses. Although FA composition differed between the inner and outer blubber layers, the difference was consistent across body sites, and differences between layers within individual FAs were small (&lt;2%). Lipid content at the sternum of lactating females was 6% higher than non-lactating females, consistent with known variation in body condition among these reproductive classes. Across study years, lipid content varied 18% and individual FAs varied 6%, likely reflecting population-level interannual variability in energy budgets and small differences in diet among years. Consistency in blubber lipid content across blubber depth and body sites and detectable variation in blubber lipid content among reproductive classes and years suggests the potential for lipid content to be a useful indicator of walrus body condition. In addition to information on condition, FA composition of blubber samples could potentially provide insights into changes in walrus diet that may be expected to occur from changes in their access to prey resources resulting from continued sea ice loss.


2020 ◽  
pp. jeb.227389
Author(s):  
A. Borque-Espinosa ◽  
D. Ferrero-Fernández ◽  
R. Capaccioni Azzati ◽  
A. Fahlman

In the present study, we examined lung function in healthy resting adult (born in 2003) Pacific walruses (Odobenus rosmarus divergens) by measuring respiratory flow (V̇) using a custom-made pneumotachometer. Three female walruses (670 – 1025 kg) voluntarily participated in spirometry trials while spontaneously breathing on land (sitting and lying down in sternal recumbency) and floating in water. While sitting, two walruses performed active respiratory efforts, and one animal participated in lung compliance measurements. For spontaneous breaths, V̇ was lower when lying down (e.g. expiration: 7.1±1.2 l · s−1) as compared to when in water (9.9±1.4 l · s−1), while tidal volume (VT, 11.5±4.6 l), breath duration (4.6±1.4 s), and respiratory frequency (7.6±2.2 breaths · min−1) remained the same. The measured VT and specific dynamic lung compliance (0.32±0.07 cmH2O−1) for spontaneous breaths, were higher than those estimated for similarly sized terrestrial mammals. The VT increased with body mass (allometric mass-exponent=1.29) and ranged from 3 to 43% of the estimated total lung capacity (TLCest) for spontaneous breaths. When normalized for TLCest, the maximal expiratory V̇ (V̇exp) was higher than that estimated in phocids, but lower than that reported in cetaceans and the California sea lion. The V̇exp was maintained over all lung volumes during spontaneous and active respiratory manoeuvres. We conclude that location (water or land) affects lung function in the walrus and should be considered when studying respiratory physiology in semi-aquatic marine mammals.


2020 ◽  
Vol 101 (4) ◽  
pp. 941-950
Author(s):  
Nathan Taylor ◽  
Casey T Clark ◽  
Nicole Misarti ◽  
Lara Horstmann

Abstract Pacific walruses (Odobenus rosmarus divergens) play a vital role in Arctic marine ecosystems and the subsistence lifestyle of Alaska Native communities. Museum collections contain numerous archaeological and historic walrus specimens that have proven useful in a variety of studies; however, for many cases, the sex of these specimens is unknown. Sexes of adult (&gt; 5 years determined by tooth aging) Atlantic walruses (Odobenus rosmarus rosmarus) have been accurately determined in previous studies using mandible measurements. We tested the validity of this approach for Pacific walruses, and used full fusion of the mandibular symphysis to define adults. Using high precision digital calipers (± 0.01 mm), four measurements were taken either on the left or right side of 91 walrus mandibles: 80 modern mandibles (70 known-sex specimens; 10 unknown-sex specimens) and 11 archaeological mandibles of unknown sex. We used linear discriminant function analysis (LDFA) to determine what measurements best distinguished Pacific walrus males from females. Minimum mandible thickness had the most predictive power, whereas mandible length, height, and depth, were less predictive. Posterior probabilities indicated that LDFA classified the known-sex Pacific walruses with 100% accuracy, and unknown sex with ≥ 90% probability. The ability to define the sex of unknown individuals accurately could greatly increase the sample size of future projects dealing with skeletal remains, and will improve future research efforts.


2020 ◽  
Vol 101 (3) ◽  
pp. 755-765 ◽  
Author(s):  
William S Beatty ◽  
Patrick R Lemons ◽  
Suresh A Sethi ◽  
Jason P Everett ◽  
Cara J Lewis ◽  
...  

Abstract The kin structure of a species at relatively fine spatial scales impacts broad-scale patterns in genetic structure at the population level. However, kin structure rarely has been elucidated for migratory marine mammals. The Pacific walrus (Odobenus rosmarus divergens) exhibits migratory behavior linked to seasonal patterns in sea ice dynamics. Consequently, information on the spatial genetic structure of the subspecies, including kin structure, could aid wildlife managers in designing future studies to evaluate the impacts of sea ice loss on the subspecies. We sampled 8,303 individual walruses over a 5-year period and used 114 single-nucleotide polymorphisms to examine both broad-scale patterns in genetic structure and fine-scale patterns in relatedness. We did not detect any evidence of genetic structure at broad spatial scales, with low FST values (≤ 0.001) across all pairs of putative aggregations. To evaluate kin structure at fine spatial scales, we defined a walrus group as a cluster of resting individuals that were less than one walrus body length apart. We found weak evidence of kin structure at fine spatial scales, with 3.72% of groups exhibiting mean relatedness values greater than expected by chance, and a significantly higher overall observed mean value of relatedness within groups than expected by chance. Thus, the high spatiotemporal variation in the distribution of resources in the Pacific Arctic environment likely has favored a gregarious social system in Pacific walruses, with unrelated animals forming temporary associations.


Polar Biology ◽  
2020 ◽  
Vol 43 (6) ◽  
pp. 767-772
Author(s):  
Colleen Reichmuth ◽  
Jillian M. Sills ◽  
Arial Brewer ◽  
Lisa Triggs ◽  
Rebecca Ferguson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document