scholarly journals Solvation structure and dynamics of Li and LiO2 and their transformation in non-aqueous organic electrolyte solvents from first-principles simulations

Author(s):  
Behnaz Rahmani Didar ◽  
Axel Gross

Density functional theory calculations together with ab initio molecular dynamics (AIMD) simulations have been used to study the solvation, diffusion and transformation of Li+ and LiO2 upon O2 reduction in three organic electrolytes. These processes are critical for the performance of Li-air batteries. Apart from studying the structure of the solvation shells in detail, AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO2 formation from Li+ and O2- and the subsequent disproportionation of 2LiO2 into Li2O2 + O2. By comparing the results of the simulations to gas phase calculations the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions.

Author(s):  
Demetrio A da Silva Filho ◽  
Veaceslav Coropceanu ◽  
Denis Fichou ◽  
Nadine E Gruhn ◽  
Tonja G Bill ◽  
...  

Density functional theory calculations together with highly resolved gas-phase ultraviolet photoelectron spectroscopy have been applied to oligothiophene chains with up to eight thiophene rings. One of the important parameters governing the charge transport properties in the condensed phase is the amount of energy relaxation upon ionization. Here, we investigate the impact on this parameter of the backbone flexibility present in oligothiophenes as a result of inter-ring torsional motions. With respect to oligoacenes that are characterized by a coplanar and rigid backbone, the torsional flexibility in oligothiophenes adds to the relaxation energy and leads to the broadening of the first ionization peak, making its analysis more complex.


1999 ◽  
Vol 06 (05) ◽  
pp. 787-792
Author(s):  
C. M. CHANG ◽  
C. M. WEI

Trimer is the smallest cluster that can have a one-dimensional or a two-dimensional structure on fcc (111) surface. Using first-principles density-functional-theory calculations, the structural and dynamical properties of Al trimer on Al(111) surface have been studied in detail. Al trimer on Al(111) surface has four close-packed (compact) triangular configurations, two linear configurations, and some other noncompact triangular configurations. The close-packed triangular trimers are more stable than the noncompact triangular trimers as well as the linear trimers. For the dynamics of Al trimer on Al(111) surface, the diffusion processes are much more complicated than the adatom and dimer diffusions. There are three different kinds of diffusion mechanisms: concerted translations and rotation of compact triangular trimers (the energy barrier, Ed=0.24 eV); back and forth transformation between compact triangular trimers and linear trimers (Ed=0.21 eV); and translation of linear trimers (Ed= 0.28 eV). Among these different mechanisms with similar height of diffusion barriers, the concerted translations of the compact triangular trimers have the longest displacement of the center of mass in each step. Therefore, we expect that the long-range diffusion of Al trimer on Al(111) surface is dominated by the concerted motion process of the compact triangular trimers.


2016 ◽  
Vol 4 (29) ◽  
pp. 11498-11506 ◽  
Author(s):  
Taehun Lee ◽  
Yonghyuk Lee ◽  
Woosun Jang ◽  
Aloysius Soon

Using first-principles density-functional theory calculations, we investigate the advantage of using h-WO3 (and its surfaces) over the larger band gap γ-WO3 phase for the anode in water splitting. We demonstrate that h-WO3 is a good alternative anode material for optimal water splitting efficiencies.


2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


2001 ◽  
Vol 670 ◽  
Author(s):  
Michael Haverty ◽  
Atsushi Kawamoto ◽  
Gyuchang Jun ◽  
Kyeongjae Cho ◽  
Robert Dutton

ABSTRACTBulk Density Functional Theory calculations were performed on Hf and Zr substitutions for Al in κ-alumina. The lowest energy configuration found was an octahedrally coordinated Zr site. Zr dissolution was favorable with an enthalpy of -2eV/unit cell for forming Al1.875Zr0.125O3 from pure Zr and κ-alumina. Hf and Zr substitution for Al atoms introduced empty d-states below the conduction band edge reducing the Eg of pure κ-alumina (7.5eV) to 6.4-5.9eV. The edge of the valence band however remained fixed by the O p-state character. The substitution of Hf and Zr into the alumina structure may lead to a higher dielectric constant, but will also reduce Eg and result in a trade off in tunneling currents in devices.


2013 ◽  
Vol 205-206 ◽  
pp. 417-421
Author(s):  
Tatsunori Yamato ◽  
Koji Sueoka ◽  
Takahiro Maeta

The lowest energetic configurations of metal impurities in 4throw (Sc - Zn), 5throw (Y - Cd) and 6throw (Hf - Hg) elements in Ge crystals were determined with density functional theory calculations. It was found that the substitutional site is the lowest energetic configuration for most of the calculated metals in Ge. The most stable configurations of dopant (Ga, Sb) - metal complexes in Ge crystals were also investigated. Following results were obtained. (1) For Ga dopant, 1st neighbor T-site is the most stable for metals in group 3 to 7 elements while substitutional site next to Ga atom is the most stable for metals in group 8 to 12 elements. (2) For Sb dopant, substitutional site next to Sb atom is the most stable for all calculated metals. Binding energies of the interstitial metalMiwith the substitutional dopantDswere obtained by the calculated total energies. The calculated results for Ge were compared with those for Si.


Author(s):  
Javaria Batool ◽  
Syed Muhammad Alay-e-Abbas ◽  
Gustav Johansson ◽  
Waqas Zulfiqar ◽  
Muhammad Arsam Danish ◽  
...  

The thermodynamic, structural, magnetic and electronic properties of pristine and intrinsic vacancy defect containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of...


2019 ◽  
Vol 7 (39) ◽  
pp. 12306-12311 ◽  
Author(s):  
He-Ping Su ◽  
Shu-Fang Li ◽  
Yifeng Han ◽  
Mei-Xia Wu ◽  
Churen Gui ◽  
...  

First-principles density functional theory calculations, for the first time, was used to predict the Mg3TeO6-to-perovskite type phase transition in Mn3TeO6 at around 5 GPa.


Sign in / Sign up

Export Citation Format

Share Document