scholarly journals A ruthenium-based catalyst on carbon electrodes for electrochemical water splitting

Author(s):  
Lin Li ◽  
Biswanath Das ◽  
Ahibur Rahaman ◽  
Andrey Shatskiy ◽  
Fei Ye ◽  
...  

Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in our transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation and two simple methods for preparing anodes by attaching this catalyst onto multi-walled carbon nanotubes. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscope techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.

2021 ◽  
Author(s):  
Shankar S. Narwade ◽  
Shivsharan M. Mali ◽  
Bhaskar R. Sathe

A study on the in situ decoration of ethylenediamine (EDA) on acid functionalized multi-walled carbon nanotubes (O-MWCNTs) for overall water splitting reactions at all pH as an efficient and inexpensive metal-free multifunctional electrocatalyst.


2016 ◽  
Vol 4 (29) ◽  
pp. 11292-11298 ◽  
Author(s):  
Chenlong Dong ◽  
Xiaotao Yuan ◽  
Xin Wang ◽  
Xiangye Liu ◽  
Wujie Dong ◽  
...  

The design of a high performance, stable and cost-effective electrocatalyst for oxygen evolution is crucial for H2 production from electrochemical water splitting.


2021 ◽  
Author(s):  
Yulu Ge ◽  
Zhenhua Lyu ◽  
Mariana Marcos Hernandez ◽  
Dino Villagran

Projected future global energy demands require sustainable energy sources as alternatives to the current world dependence on hydrocarbon fuels. The production of hydrogen and oxygen gas from water is a promising approach. Currently, water-splitting electrolyzers require precious metals as electrocalysts because they are active and stable. Yet, replacement of these precious metals by cost-effective alternatives is necessary for the economic feasibility of this approach. Here, we describe a molecular based polymeric approach that effectively removes the need to use any metal to electrochemically split water. The incorporation of free-base porphyrin units into a 2D network structure yields a stable and efficient bifunctional electrocatalyst for water oxidation and water reduction that can operate for days at competitive overpotentials comparable to metal based ones. <br><br><br>


2021 ◽  
Author(s):  
Yulu Ge ◽  
Zhenhua Lyu ◽  
Mariana Marcos Hernandez ◽  
Dino Villagran

Projected future global energy demands require sustainable energy sources as alternatives to the current world dependence on hydrocarbon fuels. The production of hydrogen and oxygen gas from water is a promising approach. Currently, water-splitting electrolyzers require precious metals as electrocalysts because they are active and stable. Yet, replacement of these precious metals by cost-effective alternatives is necessary for the economic feasibility of this approach. Here, we describe a molecular based polymeric approach that effectively removes the need to use any metal to electrochemically split water. The incorporation of free-base porphyrin units into a 2D network structure yields a stable and efficient bifunctional electrocatalyst for water oxidation and water reduction that can operate for days at competitive overpotentials comparable to metal based ones. <br><br><br>


2014 ◽  
Vol 2 (30) ◽  
pp. 11799-11806 ◽  
Author(s):  
Xuemei Zhou ◽  
Zhaoming Xia ◽  
Zhiyun Zhang ◽  
Yuanyuan Ma ◽  
Yongquan Qu

One-step hydrothermal synthesis of ultra-thin β-Ni(OH)2 nanoplates (1.5–3.0 nm thickness) and their composite with multi-walled carbon nanotubes in the absence of surfactants function as highly efficient and stable electrocatalysts for oxygen evolution reaction.


2019 ◽  
Vol 7 (46) ◽  
pp. 26410-26420 ◽  
Author(s):  
Maira Sadaqat ◽  
Laraib Nisar ◽  
Noor-Ul-Ain Babar ◽  
Fayyaz Hussain ◽  
Muhammad Naeem Ashiq ◽  
...  

Electrochemical water splitting is economically unviable due to the sluggish kinetics of the anodically uphill oxygen evolution reaction (OER).


2016 ◽  
Vol 4 (7) ◽  
pp. 2473-2483 ◽  
Author(s):  
Yi Cheng ◽  
Amir Memar ◽  
Martin Saunders ◽  
Jian Pan ◽  
Chang Liu ◽  
...  

Dye functionalized double- and triple-walled carbon nanotubes are effective photoanodes for water splitting without the attachment of semiconductor and water oxidation catalysts.


Nanoscale ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 3378-3385 ◽  
Author(s):  
Changhong Zhan ◽  
Zheng Liu ◽  
Yang Zhou ◽  
Mingliang Guo ◽  
Xiaolin Zhang ◽  
...  

Electrochemical water splitting requires an efficient water oxidation catalyst to accelerate the oxygen evolution reaction (OER).


Biomimetics ◽  
2020 ◽  
Vol 5 (3) ◽  
pp. 43
Author(s):  
Athanasios Kotrotsos ◽  
Prokopis Yiallouros ◽  
Vassilis Kostopoulos

The solution electrospinning process (SEP) is a cost-effective technique in which a wide range of polymeric materials can be electrospun. Electrospun materials can also be easily modified during the solution preparation process (prior SEP). Based on this, the aim of the current work is the fabrication and nanomodification of scaffolds using SEP, and the investigation of their porosity and physical and mechanical properties. In this study, polylactic acid (PLA) was selected for scaffold fabrication, and further modified with multi-walled carbon nanotubes (MWCNTs) and hydroxyapatite (HAP) nanoparticles. After fabrication, porosity calculation and physical and mechanical characterization for all scaffold types were conducted. More precisely, the morphology of the fibers (in terms of fiber diameter), the surface properties (in terms of contact angle) and the mechanical properties under the tensile mode of the fabricated scaffolds have been investigated and further compared against pristine PLA scaffolds (without nanofillers). Finally, the scaffold with the optimal properties was proposed as the candidate material for potential future cell culturing.


Sign in / Sign up

Export Citation Format

Share Document