scholarly journals Free-base Porphyrin Polymer for Bifunctional Electrochemical Water Splitting

Author(s):  
Yulu Ge ◽  
Zhenhua Lyu ◽  
Mariana Marcos Hernandez ◽  
Dino Villagran

Projected future global energy demands require sustainable energy sources as alternatives to the current world dependence on hydrocarbon fuels. The production of hydrogen and oxygen gas from water is a promising approach. Currently, water-splitting electrolyzers require precious metals as electrocalysts because they are active and stable. Yet, replacement of these precious metals by cost-effective alternatives is necessary for the economic feasibility of this approach. Here, we describe a molecular based polymeric approach that effectively removes the need to use any metal to electrochemically split water. The incorporation of free-base porphyrin units into a 2D network structure yields a stable and efficient bifunctional electrocatalyst for water oxidation and water reduction that can operate for days at competitive overpotentials comparable to metal based ones. <br><br><br>

2021 ◽  
Author(s):  
Yulu Ge ◽  
Zhenhua Lyu ◽  
Mariana Marcos Hernandez ◽  
Dino Villagran

Projected future global energy demands require sustainable energy sources as alternatives to the current world dependence on hydrocarbon fuels. The production of hydrogen and oxygen gas from water is a promising approach. Currently, water-splitting electrolyzers require precious metals as electrocalysts because they are active and stable. Yet, replacement of these precious metals by cost-effective alternatives is necessary for the economic feasibility of this approach. Here, we describe a molecular based polymeric approach that effectively removes the need to use any metal to electrochemically split water. The incorporation of free-base porphyrin units into a 2D network structure yields a stable and efficient bifunctional electrocatalyst for water oxidation and water reduction that can operate for days at competitive overpotentials comparable to metal based ones. <br><br><br>


2021 ◽  
Author(s):  
Lin Li ◽  
Biswanath Das ◽  
Ahibur Rahaman ◽  
Andrey Shatskiy ◽  
Fei Ye ◽  
...  

Electrochemical water splitting constitutes one of the most promising strategies for converting water into hydrogen-based fuels, and this technology is predicted to play a key role in our transition towards a carbon-neutral energy economy. To enable the design of cost-effective electrolysis cells based on this technology, new and more efficient anodes with augmented water splitting activity and stability will be required. Herein, we report an active molecular Ru-based catalyst for electrochemically-driven water oxidation and two simple methods for preparing anodes by attaching this catalyst onto multi-walled carbon nanotubes. The anodes modified with the molecular catalyst were characterized by a broad toolbox of microscopy and spectroscope techniques, and interestingly no RuO2 formation was detected during electrocatalysis over 4 h. These results demonstrate that the herein presented strategy can be used to prepare anodes that rival the performance of state-of-the-art metal oxide anodes.


2016 ◽  
Vol 4 (29) ◽  
pp. 11292-11298 ◽  
Author(s):  
Chenlong Dong ◽  
Xiaotao Yuan ◽  
Xin Wang ◽  
Xiangye Liu ◽  
Wujie Dong ◽  
...  

The design of a high performance, stable and cost-effective electrocatalyst for oxygen evolution is crucial for H2 production from electrochemical water splitting.


Author(s):  
Di Li ◽  
Yingying Xing ◽  
Changjian Zhou ◽  
Yikai Lu ◽  
Shengjie Xu ◽  
...  

The high reaction energy barrier of the oxygen evolution reaction (OER) extremely reduces the efficiency of water splitting, which is not conducive to large-scale production of hydrogen. Due to the...


2021 ◽  
Author(s):  
Guojuan Hai ◽  
Jianfeng Huang ◽  
Liyun Cao ◽  
Koji Kajiyoshi ◽  
Long Wang ◽  
...  

Designing cost-effective bifunctional catalysts with high-performance and durability is of great significance for the renewable energy systems. Herein, a typical Fe, Ni-codoped W18O49/NF was prepared via a simple solvothermal method....


Author(s):  
Kaiming Guo ◽  
Firdoz Shaik ◽  
Jine Yang ◽  
Bin Jiang

Abstract Water splitting is considered as a potential sustainable and green technology for producing mass hydrogen and oxygen. A cost-effective self-supported stable electrocatalyst with excellent electrocatalytic performance in a wide pH range is greatly required for water splitting. This work reports on the synthesis and anchoring of Fe1CoxNiyP nanoparticles on vertically aligned reduced graphene oxide array (VrGO) via electroless plating. The catalytic activity of Fe1CoxNiyP nanoparticles is tuned finely by tailoring the cationic ratio of Co and Ni. Fe1Co2Ni1P/VrGO exhibits the lowest overpotential (58 and 110 mV) at 10 mA cm−2 and lowest tafel slope (31 and 33 mV dec−1) for hydrogen evolution reaction in 1.0 M KOH and 0.5 M H2SO4 respectively. Fe1Co1Ni2P/VrGO exhibits the lowest overpotential (173 mV) at 10 mA cm−2 with lowest tafel slope (47 mV dec-1) for oxygen evolution reaction. The enhanced performance of the electrocatalyst is attributed to improved electrical conductivity, synergistic effects and beneficial electronic states caused by the appropriate atomic ratio of Co and Ni in the bifunctional electrocatalyst. This study helps to explore the effect of variable cationic ratio in the cost-effective ternary iron group metal phosphides electrocatalysts to achieve enhanced electrocatalytic performance for water splitting in a wide pH range.


2021 ◽  
Author(s):  
Yun-Wu Li ◽  
Shi-Kun Su ◽  
Cai-Zhen Yue ◽  
Jun Shu ◽  
Pengfang Zhang ◽  
...  

Electrochemical water splitting is convinced as one of the most promising solutions to combat energy crisis. The exploitation of efficient hydrogen and oxygen evolution reactions (HER/OER) bifunctional electrocatalysts is undoubtedly...


2019 ◽  
Vol 7 (46) ◽  
pp. 26410-26420 ◽  
Author(s):  
Maira Sadaqat ◽  
Laraib Nisar ◽  
Noor-Ul-Ain Babar ◽  
Fayyaz Hussain ◽  
Muhammad Naeem Ashiq ◽  
...  

Electrochemical water splitting is economically unviable due to the sluggish kinetics of the anodically uphill oxygen evolution reaction (OER).


Nanoscale ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 3378-3385 ◽  
Author(s):  
Changhong Zhan ◽  
Zheng Liu ◽  
Yang Zhou ◽  
Mingliang Guo ◽  
Xiaolin Zhang ◽  
...  

Electrochemical water splitting requires an efficient water oxidation catalyst to accelerate the oxygen evolution reaction (OER).


Sign in / Sign up

Export Citation Format

Share Document