scholarly journals Dynamic Formation of Liquid Droplets Triggered by Sequential Enzymatic Reactions

Author(s):  
Tomoto Ura ◽  
Shunsuke Tomita ◽  
Kentaro Shiraki

<p>A model system was developed that dynamically generates two different liquid droplets via liquid–liquid phase separation coupled with a sequential glycolytic reaction. The sequential two-enzyme reaction triggers the formation/dissolution of the liquid droplets. The droplets, in turn, compartmentalize each enzymatic step and generate feedback to accelerate the overall reaction.</p>

2020 ◽  
Author(s):  
Tomoto Ura ◽  
Shunsuke Tomita ◽  
Kentaro Shiraki

<p>A model system was developed that dynamically generates two different liquid droplets via liquid–liquid phase separation coupled with a sequential glycolytic reaction. The sequential two-enzyme reaction triggers the formation/dissolution of the liquid droplets. The droplets, in turn, compartmentalize each enzymatic step and generate feedback to accelerate the overall reaction.</p>


2020 ◽  
Author(s):  
Tomoto Ura ◽  
Ako Kagawa ◽  
Hiromasa Yagi ◽  
Naoya Tochio ◽  
Takanori Kigawa ◽  
...  

ABSTRACTLiquid droplets formed by liquid-liquid phase separation are attracting attention as functional states of proteins in living cells. Liquid droplets are thought to activate enzymatic reactions by assembling the required molecules. Thus, liquid droplets usually increase the affinity of an enzyme to its substrates, leading to decreased KM values. In this study, we demonstrate a new mechanism of enzyme activation in the droplets using Llactate oxidase (LOX). In the presence of poly-L-lysine (PLL), LOX formed droplets with diameters of hundreds of nanometers to tens of micrometers, stabilized by electro-static interaction. The enzyme activity of LOX in the droplets was significantly enhanced by a fourfold decrease in KM and a tenfold increase in kcat. To our knowledge, this represents the first report for increasing kcat by the formation of the liquid droplet. Interestingly, the conformation of LOX changed in the liquid droplet, probably leading to increased kcat value. Understanding enzyme activation in the droplets provides essential information about enzyme function in living cells in addition to biotechnology applications.


2020 ◽  
Vol 56 (78) ◽  
pp. 11577-11580
Author(s):  
Rosario Oliva ◽  
Sanjib K. Mukherjee ◽  
Zamira Fetahaj ◽  
Simone Möbitz ◽  
Roland Winter

Protein/RNA droplet formation by liquid–liquid phase separation has emerged as a key mechanism for cellular organization. We show that binding of antimicrobial peptides such as LL-III can lead to loss of droplet function.


2020 ◽  
Vol 6 (23) ◽  
pp. eaba3471 ◽  
Author(s):  
Yusuke Sato ◽  
Tetsuro Sakamoto ◽  
Masahiro Takinoue

DNA has the potential to achieve a controllable macromolecular structure, such as hydrogels or droplets formed through liquid-liquid phase separation (LLPS), as the design of its base sequence can result in programmable interactions. Here, we constructed “DNA droplets” via LLPS of sequence-designed DNA nanostructures and controlled their dynamic functions by designing their sequences. Specifically, we were able to adjust the temperature required for the formation of DNA droplets by designing the sequences. In addition, the fusion, fission, and formation of Janus-shaped droplets were controlled by sequence design and enzymatic reactions. Furthermore, modifications of proteins with sequence-designed DNAs allowed for their capture into specific droplets. Overall, our results provide a platform for designing and controlling macromolecular droplets via the information encoded in component molecules and pave the way for various applications of sequence-designed DNA such as cell mimics, synthetic membraneless organelles, and artificial molecular systems.


2021 ◽  
Author(s):  
Tomoto Ura ◽  
Shunsuke Tomita ◽  
Kentaro Shiraki

Dynamic droplet formation via liquid-liquid phase separation (LLPS) is believed to be involved in the regulation of various biological processes. Here, a model LLPS system coupled with a sequential glycolytic...


2020 ◽  
Author(s):  
Manzar Abbas ◽  
Wojciech P. Lipiński ◽  
Karina K. Nakashima ◽  
Wilhelm T.S. Huck ◽  
Evan Spruijt

Liquid-liquid phase separation of disordered proteins has emerged as a ubiquitous route to membraneless compartments in living cells, and similar coacervates may have played a role when the first cells formed. However, existing coacervates are typically made of multiple macromolecular components, and designing short peptide analogues capable of self-coacervation has proven difficult. Here, we present a short peptide synthon for phase separation, made of only two dipeptide stickers linked via a flexible, hydrophilic spacer. These small-molecule compounds self-coacervate into micrometre-sized liquid droplets at sub-mM concentrations, which retain up to 75 weight-% water. The design is general and we derive guidelines for the required sticker hydrophobicity and spacer polarity. To illustrate their potential as protocells, we create a disulphide-linked derivative that undergoes reversible compartmentalisation controlled by redox chemistry. The resulting coacervates sequester and melt nucleic acids, and act as microreactors that catalyse two different anabolic reactions yielding molecules of increasing complexity. This provides a stepping stone for new protocells made of single peptide species.<br>


2020 ◽  
Author(s):  
Manzar Abbas ◽  
Wojciech P. Lipiński ◽  
Karina K. Nakashima ◽  
Wilhelm T.S. Huck ◽  
Evan Spruijt

Liquid-liquid phase separation of disordered proteins has emerged as a ubiquitous route to membraneless compartments in living cells, and similar coacervates may have played a role when the first cells formed. However, existing coacervates are typically made of multiple macromolecular components, and designing short peptide analogues capable of self-coacervation has proven difficult. Here, we present a short peptide synthon for phase separation, made of only two dipeptide stickers linked via a flexible, hydrophilic spacer. These small-molecule compounds self-coacervate into micrometre-sized liquid droplets at sub-mM concentrations, which retain up to 75 weight-% water. The design is general and we derive guidelines for the required sticker hydrophobicity and spacer polarity. To illustrate their potential as protocells, we create a disulphide-linked derivative that undergoes reversible compartmentalisation controlled by redox chemistry. The resulting coacervates sequester and melt nucleic acids, and act as microreactors that catalyse two different anabolic reactions yielding molecules of increasing complexity. This provides a stepping stone for new protocells made of single peptide species.<br>


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
W. Michael Babinchak ◽  
Benjamin K. Dumm ◽  
Sarah Venus ◽  
Solomiia Boyko ◽  
Andrea A. Putnam ◽  
...  

Abstract Liquid-liquid phase separation (LLPS) of proteins that leads to formation of membrane-less organelles is critical to many biochemical processes in the cell. However, dysregulated LLPS can also facilitate aberrant phase transitions and lead to protein aggregation and disease. Accordingly, there is great interest in identifying small molecules that modulate LLPS. Here, we demonstrate that 4,4’-dianilino-1,1’-binaphthyl-5,5’-disulfonic acid (bis-ANS) and similar compounds are potent biphasic modulators of protein LLPS. Depending on context, bis-ANS can both induce LLPS de novo as well as prevent formation of homotypic liquid droplets. Our study also reveals the mechanisms by which bis-ANS and related compounds modulate LLPS and identify key chemical features of small molecules required for this activity. These findings may provide a foundation for the rational design of small molecule modulators of LLPS with therapeutic value.


2020 ◽  
Vol 117 (50) ◽  
pp. 31882-31890
Author(s):  
Solomiia Boyko ◽  
Krystyna Surewicz ◽  
Witold K. Surewicz

One of the hallmarks of Alzheimer’s disease and several other neurodegenerative disorders is the aggregation of tau protein into fibrillar structures. Building on recent reports that tau readily undergoes liquid–liquid phase separation (LLPS), here we explored the relationship between disease-related mutations, LLPS, and tau fibrillation. Our data demonstrate that, in contrast to previous suggestions, pathogenic mutations within the pseudorepeat region do not affect tau441’s propensity to form liquid droplets. LLPS does, however, greatly accelerate formation of fibrillar aggregates, and this effect is especially dramatic for tau441 variants with disease-related mutations. Most important, this study also reveals a previously unrecognized mechanism by which LLPS can regulate the rate of fibrillation in mixtures containing tau isoforms with different aggregation propensities. This regulation results from unique properties of proteins under LLPS conditions, where total concentration of all tau variants in the condensed phase is constant. Therefore, the presence of increasing proportions of the slowly aggregating tau isoform gradually lowers the concentration of the isoform with high aggregation propensity, reducing the rate of its fibrillation. This regulatory mechanism may be of direct relevance to phenotypic variability of tauopathies, as the ratios of fast and slowly aggregating tau isoforms in brain varies substantially in different diseases.


Sign in / Sign up

Export Citation Format

Share Document