Spin-Forbidden Excitation Enables Infrared Photoredox Catalysis

Author(s):  
Tomislav Rovis ◽  
Benjamin D. Ravetz ◽  
Nicholas E. S. Tay ◽  
Candice Joe ◽  
Melda Sezen-Edmonds ◽  
...  

We describe a new family of catalysts that undergo direct ground state singlet to excited state triplet excitation with IR light, leading to photoredox catalysis without the energy waste associated with intersystem crossing. The finding allows a mole scale reaction in batch using infrared irradiation.

2020 ◽  
Author(s):  
Tomislav Rovis ◽  
Benjamin D. Ravetz ◽  
Nicholas E. S. Tay ◽  
Candice Joe ◽  
Melda Sezen-Edmonds ◽  
...  

We describe a new family of catalysts that undergo direct ground state singlet to excited state triplet excitation with IR light, leading to photoredox catalysis without the energy waste associated with intersystem crossing. The finding allows a mole scale reaction in batch using infrared irradiation.


1990 ◽  
Vol 68 (10) ◽  
pp. 1685-1692 ◽  
Author(s):  
Bimsara W. Disanayaka ◽  
Alan C. Weedon

The mechanism of the photochemical cycloaddition reaction between N-benzoylindole, 1, and cyclopentene to give cyclobutane adducts 2 and 3 has been examined. The triplet excited state lifetime and quantum yield of intersystem crossing were determined for 1 as (2.8 ± 0.3) × 10−8 s and 0.39 ± 0.01, respectively, using the triplet counting procedure. In addition, the dependence of the quantum yield of cycloadduct formation upon the concentration of cyclopentene and upon the concentration of excited state quenchers has been determined. The results are used to propose a mechanistic model in which the triplet excited state of 1 reacts with cyclopentene to give a triplet 1,4-biradical intermediate. Following spin inversion the biradical intermediate reverts to the ground state starting materials or proceeds to the products 2 and 3; this partitioning, along with the quantum yield of intersystem crossing, gives rise to a limiting quantum yield of cycloaddition at infinite alkene concentration of 0.061. It is calculated that 84% of the biradical intermediates revert to the starting materials and 16% proceed to cycloadducts. The quantum yield data are also used to calculate two independent values of the rate constant for reaction of the triplet excited 1 with alkene; the values are (1.8 ± 0.1) × 107M−1 s−1 and (4.0 ± 0.8) × 106 M−1 s−1'. Some evidence for self quenching of the triplet excited state of 1 by ground state 1 was also observed. The quantum yield of intersystem crossing and the triplet excited state lifetime of 1 were found to vary with the solvent used; this is discussed in terms of the possible existence of a charge transfer triplet excited state. Keywords: indole, photocycloaddition, mechanism.


2019 ◽  
Author(s):  
Ryan Ash ◽  
Kaili Zhang ◽  
Josh Vura-Weis

Cobalt complexes that undergo charge-transfer induced spin-transitions (CTIST) or valence tautomerism (VT) from low spin (LS) Co(III) to high spin (HS) Co(II) are potential candidates for magneto-optical switches. We use M-edge XANES spectroscopy with 40 fs time resolution to measure the excited-state dynamics of Co(III)(Cat-N-SQ)(Cat-N-BQ), where Cat-N-BQ and Cat-N-SQ are the singly and doubly reduced forms of the 2-(2-hydroxy-3,5-di-tert-butylphenyl-imino)-4,6-di-tert-butylcyclohexa-3,5-dienone ligand. The extreme ultraviolet probe pulses, produced using a tabletop high-harmonic generation light source, measure 3p3d transitions and are sensitive to the spin and oxidation state of the Co center. Photoexcitation at 525 nm produces a low-spin Co(II) ligand-to-metal charge transfer state which undergoes intersystem crossing to high-spin Co(II) in 67 fs. Vibrational cooling from this hot HS Co(II) state competes on the hundreds-of-fs timescale with back-intersystem crossing to the ground state, with 60% of the population trapped in a cold HS Co(II) state for 24 ps. Ligand field multiplet simulations accurately reproduce the ground-state spectra and support the excited-state assignments. This work demonstrates the ability of M-edge XANES to measure ultrafast photophysics of molecular Co complexes.<br><br><br>


2019 ◽  
Author(s):  
Ryan Ash ◽  
Kaili Zhang ◽  
Josh Vura-Weis

Cobalt complexes that undergo charge-transfer induced spin-transitions (CTIST) or valence tautomerism (VT) from low spin (LS) Co(III) to high spin (HS) Co(II) are potential candidates for magneto-optical switches. We use M-edge XANES spectroscopy with 40 fs time resolution to measure the excited-state dynamics of Co(III)(Cat-N-SQ)(Cat-N-BQ), where Cat-N-BQ and Cat-N-SQ are the singly and doubly reduced forms of the 2-(2-hydroxy-3,5-di-tert-butylphenyl-imino)-4,6-di-tert-butylcyclohexa-3,5-dienone ligand. The extreme ultraviolet probe pulses, produced using a tabletop high-harmonic generation light source, measure 3p3d transitions and are sensitive to the spin and oxidation state of the Co center. Photoexcitation at 525 nm produces a low-spin Co(II) ligand-to-metal charge transfer state which undergoes intersystem crossing to high-spin Co(II) in 67 fs. Vibrational cooling from this hot HS Co(II) state competes on the hundreds-of-fs timescale with back-intersystem crossing to the ground state, with 60% of the population trapped in a cold HS Co(II) state for 24 ps. Ligand field multiplet simulations accurately reproduce the ground-state spectra and support the excited-state assignments. This work demonstrates the ability of M-edge XANES to measure ultrafast photophysics of molecular Co complexes.<br><br><br>


2019 ◽  
Vol 215 ◽  
pp. 364-378 ◽  
Author(s):  
Matthias Schmalzbauer ◽  
Indrajit Ghosh ◽  
Burkhard König

A novel photocatalytic concept based on photoexcitation of an organic anionic ground state catalyst for direct C–H (het)arylations using (het)aryl chlorides.


2019 ◽  
Author(s):  
Ryan Ash ◽  
Kaili Zhang ◽  
Josh Vura-Weis

Cobalt complexes that undergo charge-transfer induced spin-transitions (CTIST) or valence tautomerism (VT) from low spin (LS) Co(III) to high spin (HS) Co(II) are potential candidates for magneto-optical switches. We use M-edge XANES spectroscopy with 40 fs time resolution to measure the excited-state dynamics of Co(III)(Cat-N-SQ)(Cat-N-BQ), where Cat-N-BQ and Cat-N-SQ are the singly and doubly reduced forms of the 2-(2-hydroxy-3,5-di-tert-butylphenyl-imino)-4,6-di-tert-butylcyclohexa-3,5-dienone ligand. The extreme ultraviolet probe pulses, produced using a tabletop high-harmonic generation light source, measure 3p3d transitions and are sensitive to the spin and oxidation state of the Co center. Photoexcitation at 525 nm produces a low-spin Co(II) ligand-to-metal charge transfer state which undergoes intersystem crossing to high-spin Co(II) in 67 fs. Vibrational cooling from this hot HS Co(II) state competes on the hundreds-of-fs timescale with back-intersystem crossing to the ground state, with 60% of the population trapped in a cold HS Co(II) state for 24 ps. Ligand field multiplet simulations accurately reproduce the ground-state spectra and support the excited-state assignments. This work demonstrates the ability of M-edge XANES to measure ultrafast photophysics of molecular Co complexes.<br><br><br>


Synlett ◽  
2021 ◽  
Author(s):  
Thomas S. Teets ◽  
Yanyu Wu ◽  
Dooyoung Kim

AbstractPhotoredox catalysis has proven to be a powerful tool in synthetic organic chemistry. The rational design of photosensitizers with improved photocatalytic performance constitutes a major advancement in photoredox organic transformations. This review summarizes the fundamental ground-state and excited-state photophysical and electrochemical attributes of molecular photosensitizers, which are important determinants of their photocatalytic reactivity.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document