scholarly journals Tandem Photoredox Catalysis: Enabling Carbonylative Amidation of Aryl and Alkylhalides

Author(s):  
José Augusto Forni ◽  
NENAD MICIC ◽  
Timothy Connell ◽  
GEETHIKA WERAGODA ◽  
Anastasios Polyzos

<p>We report a new visible light-mediated carbonylative amidation of aryl, heteroaryl and alkyl halides. A tandem catalytic cycle of [Ir(ppy)<sub>2</sub>(dtb-bpy)]<sup>+</sup> generates a potent iridium photoreductant via a second catalytic cycle in the presence of DIPEA which productively engages aryl bromides, iodides and even chlorides as well as primary, secondary and tertiary alkyl iodides. The versatility of the in-situ generated catalyst is illustrated by compatibility with aliphatic and aromatic amines, high functional group tolerance and the late-stage amidation of complex natural products. </p>

2020 ◽  
Author(s):  
José Augusto Forni ◽  
NENAD MICIC ◽  
Timothy Connell ◽  
GEETHIKA WERAGODA ◽  
Anastasios Polyzos

<p>We report a new visible light-mediated carbonylative amidation of aryl, heteroaryl and alkyl halides. A tandem catalytic cycle of [Ir(ppy)<sub>2</sub>(dtb-bpy)]<sup>+</sup> generates a potent iridium photoreductant via a second catalytic cycle in the presence of DIPEA which productively engages aryl bromides, iodides and even chlorides as well as primary, secondary and tertiary alkyl iodides. The versatility of the in-situ generated catalyst is illustrated by compatibility with aliphatic and aromatic amines, high functional group tolerance and the late-stage amidation of complex natural products. </p>


2022 ◽  
Author(s):  
Jose Aleman

Abstract Herein, we report, for the first time, a general, facile and environmentally friendly Minisci-type alkylation of N-heteroarenes under simple and straightforward electrochemical conditions using widely available alkyl halides as radical precursors. Primary, secondary and tertiary alkyl radicals have shown to be efficiently generated and coupled with a large variety of N-heteroarenes. The method presents a very high functional group tolerance, including various heterocyclic-based natural products, which highlights the robustness of the methodology. This applicability has been further proved in the synthesis of various interesting biologically valuable building blocks. In addition, we have proposed a mechanism based on different proofs and electrochemical evidences.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3466-3472
Author(s):  
Yunkui Liu ◽  
Bingwei Zhou ◽  
Qiao Li ◽  
Hongwei Jin

We herein describe a Ni-catalyzed multicomponent coupling reaction of alkyl halides, isocyanides, and H2O to access alkyl amides. Bench-stable NiCl2(dppp) is competent to initiate this transformation under mild reaction conditions, thus allowing easy operation and adding practical value. Substrate scope studies revealed a broad functional group tolerance and generality of primary and secondary alkyl halides in this protocol. A plausible catalytic cycle via a SET process is proposed based on preliminary experiments and previous literature.


2020 ◽  
Author(s):  
Xiao-Xu Wang ◽  
Xi Lu ◽  
Shi-Jiang He ◽  
Yao Fu

We report a three-component olefin reductive dicarbofunctionalization for constructing densely functionalized alkylborates, specifically, nickel-catalyzed reductive dialkylation and alkylarylation of vinyl boronates with a variety of alkyl bromides and aryl iodides. This reaction exhibits good coupling efficiency and excellent functional group compatibility, providing convenient access to the late-stage modification of complex natural products and drug molecules. Combined with versatile alkylborate transformations, this reaction could also find applications in the modular and convergent synthesis of complex, densely functionalized compounds.


Synthesis ◽  
2018 ◽  
Vol 50 (20) ◽  
pp. 3974-3996 ◽  
Author(s):  
Josep Cornella ◽  
Matthew O’Neill

While the advent of transition-metal catalysis has undoubtedly transformed synthetic chemistry, problems persist with the introduction of secondary and tertiary alkyl nucleophiles into C(sp2) aryl electrophiles. Complications arise from the delicate organometallic intermediates typically invoked by such processes, from which competition between the desired reductive elimination event and the deleterious β-H elimination pathways can lead to undesired isomerization of the incoming nucleophile. Several methods have integrated distinct combinations of metal, ligand, nucleophile, and electrophile to provide solutions to this problem. Despite substantial progress, refinements to current protocols will facilitate the realization of complement reactivity and improved functional group tolerance. These issues have become more pronounced in the context of green chemistry and sustainable catalysis, as well as by the current necessity to develop robust, reliable cross-couplings beyond less explored C(sp2)–C(sp2) constructs. Indeed, the methods discussed herein and the elaborations thereof enable an ‘unlocking’ of accessible topologically enriched chemical space, which is envisioned to influence various domains of application.1 Introduction2 Mechanistic Considerations3 Magnesium Nucleophiles4 Zinc Nucleophiles5 Boron Nucleophiles6 Other Nucleophiles7 Tertiary Nucleophiles8 Reductive Cross-Coupling with in situ Organometallic Formation9 Conclusion


2020 ◽  
Author(s):  
Cheng Li-Jie ◽  
Zhao Siling ◽  
Neal Mankad

A Cu-catalyzed carbonylative borylation of unactivated alkyl halides has been developed, enabling efficient synthesis of aliphatic potassium acyltrifluoroborates (KATs) in high yields by treating the in-situ formed tetracoordinated acylboron intermediates with aqueous KHF2. A variety of functional groups are tolerated under the mild reaction conditions, and primary, secondary and tertiary alkyl halides are all applicable. In addition, this method also provides facile access to N-methyliminodiacetyl (MIDA) acylboronates as well as α-methylated potassium acyltrifluoroborates in a one-pot manner. Mechanistic studies indicate a radical atom transfer carbonylation (ATC) mechanism to form acyl halide intermediates that are subsequently borylated by (NHC)CuBpin.<br>


2020 ◽  
Author(s):  
Tobias Brandhofer ◽  
Volker Derdau ◽  
María Mendez ◽  
Christoph Pöverlein ◽  
Olga Garcia Mancheno

Abstract Visible light mediated late-stage functionalization is a rising field in synthetic and medicinal chemistry, allowing the fast and diversified modification of valuable, potentially therapeutic compounds such as peptides. However, there are relatively few mild methodologies for the C(sp3)-H functionalization of complex peptides. Herein, we report a visible light mediated photocatalytic protocol for the benzylic C-H modification of tyrosine and related C-H bonds. The embraced radical-cation/deprotonation strategy enables an incorporation of a wide range of valuable functional groups in high yields and chemoselectivity. The mild reaction conditions, site-selectivity and high functional group tolerance was highlighted by the functionalization of complex peptides, drugs and natural products, providing a promising synthetic platform in medicinal chemistry.


Author(s):  
Maxim Radzhabov ◽  
Neal Mankad

<a></a><a>We demonstrated unprecedentedly that Co complexes can catalyze hydrogermylation of alkynes. Subsequently, a selective, accessible method was developed to synthesize E-(β)-vinyl(trialkyl)germanes from various terminal alkynes with high yields. As shown on multiple examples, the developed method demonstrates broad functional group tolerance and practical utility for late-stage hydrogermylation of drugs and natural products. The method is compatible with alkynes bearing both aryl and alkyl substituents, providing unrivaled selectivity for previously challenging 1° alkyl-substituted alkynes. Moreover, the catalyst used in this method, Co<sub>2</sub>(CO)<sub>8</sub>, is a cheap and commercially available reagent. Conducted mechanistic studies supported syn-addition of Bu<sub>3</sub>GeH to an alkyne</a> π-complex.


2021 ◽  
Author(s):  
Shan Wang ◽  
Tian-Yi Zhang ◽  
Jian-Xin Zhang ◽  
Huan Meng ◽  
Bi-Hong Chen ◽  
...  

Abstract Chiral dialkyl amines and alcohols are ubiquitous in pharmaceuticals, pesticides, natural products and fine chemicals, yet difficult to access due to the challenge to differentiate between the spatially and electronically similar alkyl groups. Herein, we report a nickel-catalyzed enantioselective reductive hydroalkylation of acyl enamines and enol esters with alkyl halides to afford enantioenriched α-branched aliphatic amines and alcohols in good yields with excellent levels of enantioselectivity. The operationally simple protocol provides a straightforward access to chiral dialkyl amine and alcohol derivatives from simple starting materials with great functional group tolerance.


2021 ◽  
Author(s):  
Maxim Radzhabov ◽  
Neal Mankad

<a></a><a>We demonstrated unprecedentedly that Co complexes can catalyze hydrogermylation of alkynes. Subsequently, a selective, accessible method was developed to synthesize E-(β)-vinyl(trialkyl)germanes from various terminal alkynes with high yields. As shown on multiple examples, the developed method demonstrates broad functional group tolerance and practical utility for late-stage hydrogermylation of drugs and natural products. The method is compatible with alkynes bearing both aryl and alkyl substituents, providing unrivaled selectivity for previously challenging 1° alkyl-substituted alkynes. Moreover, the catalyst used in this method, Co<sub>2</sub>(CO)<sub>8</sub>, is a cheap and commercially available reagent. Conducted mechanistic studies supported syn-addition of Bu<sub>3</sub>GeH to an alkyne</a> π-complex.


Sign in / Sign up

Export Citation Format

Share Document