scholarly journals An Efficient and Accurate Model for Water with an Improved Non-Bonded Potential

Author(s):  
Mohamad Mohebifar ◽  
Christopher Rowley

A molecular mechanical model for liquid water is developed that uses a physically-motivated potential to represent Pauli repulsion and dispersion instead of the standard Lennard-Jones potential. The model has three-atomic sites and a virtual site located on the ∠HOH bisector (i.e., a TIP4P-type model). Pauli-repulsive interactions are represented using a Buckingham-type exponential decay potential. Dispersion interactions are represented by both and terms. This higher order dispersion term has been neglected by most force fields. The ForceBalance code was used to define parameters that optimally reproduce the experimental physical properties of liquid water. The resulting model is in good agreement with the experimental density, dielectric constant, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, diffusion coefficient, and radial distribution function. A GPU-accelerated implementation of this improved non-bonded potential can be employed in OpenMM without modification by using the CustomNonBondedForce feature. Efficient and automated parameterization of these non-bonded potentials provides a rational strategy to define a new molecular mechanical force field that treats repulsion and dispersion interactions more rigorously without major modifications to existing simulation codes or a substantially larger computational cost.

2020 ◽  
Author(s):  
Mohamad Mohebifar ◽  
Christopher Rowley

A molecular mechanical model for liquid water is developed that uses a physically-motivated potential to represent Pauli repulsion and dispersion instead of the standard Lennard-Jones potential. The model has three-atomic sites and a virtual site located on the ∠HOH bisector (i.e., a TIP4P-type model). Pauli-repulsive interactions are represented using a Buckingham-type exponential decay potential. Dispersion interactions are represented by both and terms. This higher order dispersion term has been neglected by most force fields. The ForceBalance code was used to define parameters that optimally reproduce the experimental physical properties of liquid water. The resulting model is in good agreement with the experimental density, dielectric constant, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, diffusion coefficient, and radial distribution function. A GPU-accelerated implementation of this improved non-bonded potential can be employed in OpenMM without modification by using the CustomNonBondedForce feature. Efficient and automated parameterization of these non-bonded potentials provides a rational strategy to define a new molecular mechanical force field that treats repulsion and dispersion interactions more rigorously without major modifications to existing simulation codes or a substantially larger computational cost.


2020 ◽  
Author(s):  
Mohamad Mohebifar ◽  
Christopher Rowley

A molecular mechanical model for liquid water is developed that uses a physically-motivated potential to represent Pauli repulsion and dispersion instead of the standard Lennard-Jones potential. The model has three-atomic sites and a virtual site located on the ∠HOH bisector (i.e., a TIP4P-type model). Pauli-repulsive interactions are represented using a Buckingham-type exponential decay potential. Dispersion interactions are represented by both and terms. This higher order dispersion term has been neglected by most force fields. The ForceBalance code was used to define parameters that optimally reproduce the experimental physical properties of liquid water. The resulting model is in good agreement with the experimental density, dielectric constant, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, diffusion coefficient, and radial distribution function. A GPU-accelerated implementation of this improved non-bonded potential can be employed in OpenMM without modification by using the CustomNonBondedForce feature. Efficient and automated parameterization of these non-bonded potentials provides a rational strategy to define a new molecular mechanical force field that treats repulsion and dispersion interactions more rigorously without major modifications to existing simulation codes or a substantially larger computational cost.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
M. J. Javanmardi ◽  
K. Jafarpur

A nanofluid model is simulated by molecular dynamics (MD) approach. The simulated nanofluid has been a dispersion of single walled carbon nanotubes (CNT) in liquid water. Intermolecular force in liquid water has been determined using TIP4P model, and, interatomic force due to carbon nanotube has been calculated by the simplified form of Brenner's potential. However, interaction between molecules of water and atoms of carbon nanotube is modeled by Lennard-Jones potential. The Green–Kubo method is employed to predict the effective thermal conductivity of the nanofluid, and, effect of temperature is sought. The obtained results are checked against experimental data, and, good agreement between them is observed.


Author(s):  
Feng Wang ◽  
Luca di Mare

Abstract Turbomachinery blade rows can have non-uniform geometries due to design intent, manufacture errors or wear. When predictions are sought for the effect of such non-uniformities, it is generally the case that whole assembly calculations are needed. A spectral method is used in this paper to approximate the flow fields of the whole assembly but with significantly less computation cost. The method projects the flow perturbations due to the geometry non-uniformity in an assembly in Fourier space, and only one passage is required to compute the flow perturbations corresponding to a certain wave-number of geometry variation. The performance of this method on transonic blade rows is demonstrated on a modern fan assembly. Low engine order and high engine order geometry non-uniformity (e.g. “saw-tooth” pattern) are examined. The non-linear coupling between the flow perturbations and the passage-averaged flow field is also demonstrated. Pressure variations on the blade surface and the potential flow field upstream of the leading edge from the proposed spectral method and the direct whole assembly solutions are compared. Good agreement is observed on both quasi-3D and full 3D cases. A lumped approach to compute deterministic fluxes is also proposed to further reduce the computational cost of the spectral method. The spectral method is formulated in such a way that it can be easily implemented into an existing harmonic flow solver by adding an extra source term, and can be potentially used as an efficient tool for aeromechanical and aeroacoustics design of turbomachinery blade rows.


2015 ◽  
Vol 72 (5) ◽  
pp. 2033-2040 ◽  
Author(s):  
Mohamed S. Ghonima ◽  
Joel R. Norris ◽  
Thijs Heus ◽  
Jan Kleissl

Abstract A detailed derivation of stratocumulus cloud thickness and liquid water path tendencies as a function of the well-mixed boundary layer mass, heat, and moisture budget equations is presented. The derivation corrects an error in the cloud thickness tendency equation derived by R. Wood to make it consistent with the liquid water path tendency equation derived by J. J. van der Dussen et al. The validity of the tendency equations is then tested against the output of large-eddy simulations of a typical stratocumulus-topped boundary layer case and is found to be in good agreement.


2021 ◽  
pp. 1-27
Author(s):  
Feng Wang ◽  
Luca di Mare

Abstract Turbomachinery blade rows can have non-uniform geometries due to design intent, manufacture errors or wear. When predictions are sought for the effect of such non-uniformities, it is generally the case that whole assembly calculations are needed. A spectral method is used in this paper to approximate the flow fields of the whole assembly but with significantly less computation cost. The method projects the flow perturbations due to the geometry non-uniformity in an assembly in Fourier space. Only one passage is required to compute the flow perturbations corresponding to a certain wave-number of geometry variation. The performance of this method on transonic blade rows is demonstrated on a modern fan assembly. Low and high engine order geometry non-uniformity (e.g. “saw-tooth” pattern) are examined. The non-linear coupling between the flow perturbations and the passage-averaged flow field is also demonstrated. Pressure variations on the blade surface and the potential flow field upstream of the leading edge from the proposed method and the direct whole assembly solutions are compared. Good agreement is observed on both quasi-3D and full 3D cases. A lumped approach to compute deterministic fluxes is also proposed to further reduce the computational cost of the spectral method. The spectral method is formulated in such a way that it can be easily implemented into an existing harmonic flow solver by adding an extra source term, and can be used as an efficient tool for aeromechanical and aeroacoustics design of turbomachinery blade rows.


Author(s):  
Quintin Hill ◽  
Chris-Kriton Skylaris

While density functional theory (DFT) allows accurate quantum mechanical simulations from first principles in molecules and solids, commonly used exchange-correlation density functionals provide a very incomplete description of dispersion interactions. One way to include such interactions is to augment the DFT energy expression by damped London energy expressions. Several variants of this have been developed for this task, which we discuss and compare in this paper. We have implemented these schemes in the ONETEP program, which is capable of DFT calculations with computational cost that increases linearly with the number of atoms. We have optimized all the parameters involved in our implementation of the dispersion correction, with the aim of simulating biomolecular systems. Our tests show that in cases where dispersion interactions are important this approach produces binding energies and molecular structures of a quality comparable with high-level wavefunction-based approaches.


1971 ◽  
Vol 26 (7) ◽  
pp. 1112-1121
Author(s):  
H.-U. Mittmann ◽  
H.-P. Weise ◽  
A. Ding ◽  
A. Henglein

A crossed beam apparatus for scattering experiments with ions on atoms or molecules is described. The results for the elastic scattering of H+ on Ar are reported. Both the structure of the secondary rainbows and the superimposed fine structure were resolved. In order to fit the experimental curves, differential cross sections were calculated in WKB approximation using the following reduced potentials: n, m, g1, g2 , g3 , L, G1 and G2 are form parameters for adjusting the width of the potential well. The fitting procedure and the influence of the chosen potentials on the resulting potential depth E and the equilibrium distance rm are described. Further, the information which can generally be obtained from the observed rainbows and the superimposed fine structure are discussed. No combination of n, m, rm and ε yielded a differential cross section in agreement with the experiments, if the Lennard-Jones potential ULJ or the modifications of Mason and Vanderslice or Schlier and coworkers are used, but excellent agreement can be obtained with the above expressions for U1 and U2 using suitable parameters. For the system H+-Ar we obtain ε = (4.04+0.1) eV, rm = (1.31±0.07) Å. These values are in good agreement with recent ab-initio calculations of Roach and Kuntz. They are considerably different from those obtained by Champion et al. 8, who did not observe the fine structure and used a too narrow potential in the evaluation of the scattering data.


2014 ◽  
Vol 13 (2) ◽  
pp. 41
Author(s):  
B. I. Favacho ◽  
J. R. P. Vaz ◽  
A. L. A. Mesquita

The navigation in Amazon region is very important due to the length of navigable rivers and the lack of alternative road network, as well as being a form of transportation costless for the flow of agricultural and manufacturing production. This kind of transportation present social, economic and technological importance for this region. Thus, this work objective to develop a mathematical approach for the marine propellers design, using a formulation for chord and pitch angle optimization, taken into account the equations of mass, energy and momentum balance for the theoretical calculation of thrust and torque relationships on an annular control volume, ie, the mathematical model is based in the Blade Element Momentum (BEM) theory. The proposed hydrodynamic model present low computational cost and it is easy to implement. The results are compared with classical Glauert's theory and the experimental data of the Wageningen B3-50 propeller, presenting good agreement.


2015 ◽  
Vol 8 (3) ◽  
pp. 1617-1625 ◽  
Author(s):  
A. K. Vance ◽  
S. J. Abel ◽  
R. J. Cotton ◽  
A. M. Woolley

Abstract. We compare the performance of five hygrometers fitted to the Facility for Airborne Atmospheric Measurement's (FAAM) BAe 146-301 research aircraft using data from approximately 100 flights executed over the course of 2 years under a wide range of conditions. Bulk comparison of cloud free data show good agreement between chilled mirror hygrometers and a WVSS-II fed from a modified Rosemount inlet, but that a WVSS-II fed from the standard flush inlet appears to over-read compared to the other instruments, except at higher humidities. Statistical assessment of hygrometer performance in cloudy conditions is problematic due to the variable nature of clouds, so a number of case studies are used instead to investigate the performance of the hygrometers in sub-optimal conditions. It is found that the flush inlet is not susceptible to either liquid or solid water but that the Rosemount inlet has a significant susceptibility to liquid water and may also be susceptible to ice. In all conditions the WVSS-II responds much more rapidly than the chilled mirror devices, with the flush inlet-fed WVSS-II being more rapid than that connected to the Rosemount.


Sign in / Sign up

Export Citation Format

Share Document