scholarly journals Development of an Inexpensive Raman-Compatible Substrate for the Construction of a Microarray Screening Platform

Author(s):  
Isamar Pastrana-Otero ◽  
Sayani Majumdar ◽  
Aidan E. Gilchrist ◽  
Brittney L. Gorman ◽  
Brendan A. C. Harley ◽  
...  

Biomaterial microarrays are being developed to facilitate identifying the extrinsic cues that elicit stem cell fate decisions to self-renew, differentiate and remain quiescent. Raman microspectroscopy, often combined with multivariate analysis techniques such as partial least square-discriminant analysis (PLS-DA), could enable the non-invasive identification of stem cell fate decisions made in response to extrinsic cues presented at specific locations on these microarrays. Because existing biomaterial microarrays are not compatible with Raman microspectroscopy, here, we develop an inexpensive substrate that is compatible with both single-cell Raman spectroscopy and the chemistries that are often used for biomaterial microarray fabrication. Standard deposition techniques were used to fabricate a custom Raman-compatible substrate that supports microarray construction. We validated that spectra from living cells on functionalized polyacrylamide (PA) gels attached to the custom Raman-compatible substrate are comparable to spectra acquired from a more expensive commercially available substrate. We also showed that the spectra acquired from individual living cells on functionalized PA gels attached to our custom substrates were of sufficient quality to enable accurate identification of cell phenotypes using PLS-DA models of the cell spectra. We demonstrated this by using cells from laboratory lines (CHO and transfected CHO cells) as well as adult stem cells that were freshly isolated from mice (long-term and short-term hematopoietic stem cells). The custom Ramancompatible substrate reported herein may be used as an inexpensive substrate for constructing biomaterial microarrays that enable the use of Raman microspectroscopy to non-invasively identify the fate decisions of stem cells in response to extrinsic cues.

2020 ◽  
Author(s):  
Isamar Pastrana-Otero ◽  
Sayani Majumdar ◽  
Aidan E. Gilchrist ◽  
Brittney L. Gorman ◽  
Brendan A. C. Harley ◽  
...  

Biomaterial microarrays are being developed to facilitate identifying the extrinsic cues that elicit stem cell fate decisions to self-renew, differentiate and remain quiescent. Raman microspectroscopy, often combined with multivariate analysis techniques such as partial least square-discriminant analysis (PLS-DA), could enable the non-invasive identification of stem cell fate decisions made in response to extrinsic cues presented at specific locations on these microarrays. Because existing biomaterial microarrays are not compatible with Raman microspectroscopy, here, we develop an inexpensive substrate that is compatible with both single-cell Raman spectroscopy and the chemistries that are often used for biomaterial microarray fabrication. Standard deposition techniques were used to fabricate a custom Raman-compatible substrate that supports microarray construction. We validated that spectra from living cells on functionalized polyacrylamide (PA) gels attached to the custom Raman-compatible substrate are comparable to spectra acquired from a more expensive commercially available substrate. We also showed that the spectra acquired from individual living cells on functionalized PA gels attached to our custom substrates were of sufficient quality to enable accurate identification of cell phenotypes using PLS-DA models of the cell spectra. We demonstrated this by using cells from laboratory lines (CHO and transfected CHO cells) as well as adult stem cells that were freshly isolated from mice (long-term and short-term hematopoietic stem cells). The custom Ramancompatible substrate reported herein may be used as an inexpensive substrate for constructing biomaterial microarrays that enable the use of Raman microspectroscopy to non-invasively identify the fate decisions of stem cells in response to extrinsic cues.


Blood ◽  
2021 ◽  
Author(s):  
Dirk Loeffler ◽  
Florin Schneiter ◽  
Weijia Wang ◽  
Arne Wehling ◽  
Tobias Kull ◽  
...  

Understanding human hematopoietic stem cell fate control is important for their improved therapeutic manipulation. Asymmetric cell division, the asymmetric inheritance of factors during division instructing future daughter cell fates, was recently described in mouse blood stem cells. In human blood stem cells, the possible existence of asymmetric cell division remained unclear due to technical challenges in its direct observation. Here, we use long-term quantitative single-cell imaging to show that lysosomes and active mitochondria are asymmetrically inherited in human blood stem cells and that their inheritance is a coordinated, non-random process. Furthermore, multiple additional organelles, including autophagosomes, mitophagosomes, autolysosomes and recycling endosomes show preferential asymmetric co-segregation with lysosomes. Importantly, asymmetric lysosomal inheritance predicts future asymmetric daughter cell cycle length, differentiation and stem cell marker expression, while asymmetric inheritance of active mitochondria correlates with daughter metabolic activity. Hence, human hematopoietic stem cell fates are regulated by asymmetric cell division, with both mechanistic evolutionary conservation and differences to the mouse system.


Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2420-2429 ◽  
Author(s):  
Christoph Schaniel ◽  
Dario Sirabella ◽  
Jiajing Qiu ◽  
Xiaohong Niu ◽  
Ihor R. Lemischka ◽  
...  

Abstract The role of Wnt signaling in hematopoietic stem cell fate decisions remains controversial. We elected to dysregulate Wnt signaling from the perspective of the stem cell niche by expressing the pan Wnt inhibitor, Wnt inhibitory factor 1 (Wif1), specifically in osteoblasts. Here we report that osteoblastic Wif1 overexpression disrupts stem cell quiescence, leading to a loss of self-renewal potential. Primitive stem and progenitor populations were more proliferative and elevated in bone marrow and spleen, manifesting an impaired ability to maintain a self-renewing stem cell pool. Exhaustion of the stem cell pool was apparent only in the context of systemic stress by chemotherapy or transplantation of wild-type stem cells into irradiated Wif1 hosts. Paradoxically this is mediated, at least in part, by an autocrine induction of canonical Wnt signaling in stem cells on sequestration of Wnts in the environment. Additional signaling pathways are dysregulated in this model, primarily activated Sonic Hedgehog signaling in stem cells as a result of Wif1-induced osteoblastic expression of Sonic Hedgehog. We find that dysregulation of the stem cell niche by overexpression of an individual component impacts other unanticipated regulatory pathways in a combinatorial manner, ultimately disrupting niche mediated stem cell fate decisions.


2021 ◽  
Author(s):  
Aidan E Gilchrist ◽  
Julio F. Serrano ◽  
Mai T. Ngo ◽  
Zona Hrnjak ◽  
Sanha Kim ◽  
...  

Biomaterial platforms are an integral part of stem cell biomanufacturing protocols. The collective biophysical, biochemical, and cellular cues of the stem cell niche microenvironment play an important role in regulating stem cell fate decisions. Three-dimensional (3D) culture of stem cells within biomaterials provides a route to present biophysical and biochemical stimuli such as cell-matrix interactions and cell-cell interactions via secreted biomolecules. Herein, we describe a maleimide-functionalized gelatin (GelMAL) hydrogel that can be crosslinked via thiol-Michael addition click reaction for the encapsulation of sensitive stem cell populations. The maleimide functional units along the gelatin backbone enables gelation via the addition of a dithiol crosslinker without requiring external stimuli (e.g., UV light, photoinitiator), reducing reactive oxide species generation. Additionally, the versatility of crosslinker selection enables easy insertion of thiol-containing bioactive or bioinert motifs. Hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) were encapsulated in GelMAL, with mechanical properties tuned to mimic the in vivo bone marrow niche. We report insertion of a cleavable peptide crosslinker that can be degraded by the proteolytic action of SortaseA, a mammalian-inert enzyme. Notably, SortaseA exposure preserves stem cell surface markers, an essential metric of hematopoietic activity used in immunophenotyping. This novel GelMAL system enables a route to producing artificial stem cell niches with tunable biophysical properties with intrinsic cell-interaction motifs and orthogonal addition of bioactive crosslinks.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3253
Author(s):  
Kamini Kaushal ◽  
Suresh Ramakrishna

Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.


2018 ◽  
Vol 6 (4) ◽  
pp. 25 ◽  
Author(s):  
Katherine Harding ◽  
Kristin White

Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.


FEBS Letters ◽  
2017 ◽  
Vol 591 (15) ◽  
pp. 2195-2212 ◽  
Author(s):  
Ilaria Lunger ◽  
Malak Fawaz ◽  
Michael A. Rieger

Sign in / Sign up

Export Citation Format

Share Document