Ab Initio Molecular Dynamics Simulation of Zinc metalloproteins with Enhanced Self-Organizing Incremental High Dimensional Neural Network

Author(s):  
Mingyuan Xu ◽  
Tong Zhu ◽  
John ZH Zhang

<p>Artificial neural network provides the possibility to develop molecular potentials with both the efficiency of the classical molecular mechanics and the accuracy of the quantum chemical methods. In this work, we developed ab initio based neural network potential (NN/MM-RESP-MBG) to perform molecular dynamics study for metalloproteins. The interaction energy, atomic forces, and atomic charges of metal binding group in NN/MM-RESP-MBG are described by a neural network potential trained with energies and forces generated from density functional calculations. Here, we used our recently proposed E-SOI-HDNN model to achieve the automatic construction of reference dataset of metalloproteins and the active learning of neural network potential functions. The predicted energies and atomic forces from the NN potential show excellent agreement with the quantum chemistry calculations. Using this approach, we can perform long time AIMD simulations and structure refinement MD simulation for metalloproteins. In 1 ns AIMD simulation of four common coordination mode of zinc-containing metalloproteins, the statistical average structure is in good agreement with statistic value of PDB Bank database. The neural network approach used in this study can be applied to construct potentials to metalloproteinase catalysis, ligand binding and other important biochemical processes and its salient features can shed light on the development of more accurate molecular potentials for metal ions in other biomacromolecule system. </p>

2020 ◽  
Author(s):  
Mingyuan Xu ◽  
Tong Zhu ◽  
John ZH Zhang

<p>Artificial neural network provides the possibility to develop molecular potentials with both the efficiency of the classical molecular mechanics and the accuracy of the quantum chemical methods. In this work, we developed ab initio based neural network potential (NN/MM-RESP-MBG) to perform molecular dynamics study for metalloproteins. The interaction energy, atomic forces, and atomic charges of metal binding group in NN/MM-RESP-MBG are described by a neural network potential trained with energies and forces generated from density functional calculations. Here, we used our recently proposed E-SOI-HDNN model to achieve the automatic construction of reference dataset of metalloproteins and the active learning of neural network potential functions. The predicted energies and atomic forces from the NN potential show excellent agreement with the quantum chemistry calculations. Using this approach, we can perform long time AIMD simulations and structure refinement MD simulation for metalloproteins. In 1 ns AIMD simulation of four common coordination mode of zinc-containing metalloproteins, the statistical average structure is in good agreement with statistic value of PDB Bank database. The neural network approach used in this study can be applied to construct potentials to metalloproteinase catalysis, ligand binding and other important biochemical processes and its salient features can shed light on the development of more accurate molecular potentials for metal ions in other biomacromolecule system. </p>


2017 ◽  
Vol 19 (31) ◽  
pp. 20551-20558 ◽  
Author(s):  
Raúl Guerrero-Avilés ◽  
Walter Orellana

The energetics and diffusion of water molecules and hydrated ions (Na+, Cl−) passing through nanopores in graphene are addressed by dispersion-corrected density functional theory calculations and ab initio molecular dynamics (MD) simulations.


Author(s):  
Pengfei Ji ◽  
Yuwen Zhang

An ab initio molecular dynamics study of femtosecond laser processing of germanium is presented in this paper. The method based on the finite temperature density functional theory is adopted to probe the nanostructure change, thermal motion of the atoms, dynamic property of the velocity autocorrelation, and the vibrational density of states. Starting from a cubic system at room temperature (300 K) containing 64 germanium atoms with an ordered arrangement of 1.132 nm in each dimension, the femtosecond laser processing is simulated by imposing the Nose Hoover thermostat to the electron subsystem lasting for ∼100 fs and continuing with microcanonical ensemble simulation of ∼200 fs. The simulation results show solid, liquid and gas phases of germanium under adjusted intensities of the femtosecond laser irradiation. We find the irradiated germanium distinguishes from the usual germanium crystal by analyzing their melting and dynamic properties.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2570 ◽  
Author(s):  
Yogeshwaran Krishnan ◽  
Aaron Byrne ◽  
Niall English

The accurate ab-initio modelling of prototypical and well-representative photo-active interfaces for candidate dye-sensitised solar cells is a challenging problem. To this end, using ab-initio molecular-dynamics (AIMD) simulation based on Density Functional Theory (DFT), the effects of explicit solvation by iodide-based, I−[bmim]+ room-temperature ionic liquids (RTILs) have been assessed on modelling a N719-chromophore sensitising dye adsorbed onto an anatase-titania (101) surface. In particular, the vibrational spectra for this model photo-active interface were calculated by means of Fourier transformed mass-weighted velocity autocorrelation functions. These were compared with experiment and against each other to gain an understanding of how using iodine-based RTILs as the electrolytic hole acceptor alters the dynamical properties of the widely-used N719 dye. The effect of Perdew-Burke-Ernzerhof (PBE) and Becke-Lee-Yang-Parr (BLYP) functionals on the vibrational spectra were assessed. PBE generally performed best in producing spectra which matched the typically expected experimental frequency modes.


2019 ◽  
Author(s):  
Liqun Cao ◽  
Jinzhe Zeng ◽  
Mingyuan Xu ◽  
Chih-Hao Chin ◽  
Tong Zhu ◽  
...  

Combustion is a kind of important reaction that affects people's daily lives and the development of aerospace. Exploring the reaction mechanism contributes to the understanding of combustion and the more efficient use of fuels. Ab initio quantum mechanical (QM) calculation is precise but limited by its computational time for large-scale systems. In order to carry out reactive molecular dynamics (MD) simulation for combustion accurately and quickly, we develop the MFCC-combustion method in this study, which calculates the interaction between atoms using QM method at the level of MN15/6-31G(d). Each molecule in systems is treated as a fragment, and when the distance between any two atoms in different molecules is greater than 3.5 Å, a new fragment involved two molecules is produced in order to consider the two-body interaction. The deviations of MFCC-combustion from full system calculations are within a few kcal/mol, and the result clearly shows that the calculated energies of the different systems using MFCC-combustion are close to converging after the distance thresholds are larger than 3.5 Å for the two-body QM interactions. The methane combustion was studied with the MFCC-combustion method to explore the combustion mechanism of the methane-oxygen system.


Sign in / Sign up

Export Citation Format

Share Document