scholarly journals Inhibition Mechanism of SARS-CoV-2 Main Protease with Ketone-Based Inhibitors Unveiled by Multiscale Simulations

Author(s):  
Carlos A. Ramos-Guzmán ◽  
J. Javier Ruiz-Pernía ◽  
Iñaki Tuñón

<p>We present the results of combined classical and QM/MM simulations for the inhibition of SARS-CoV-2 3CL protease by a recently proposed ketone-based covalent inhibitor, PF-00835231, that is under clinical trial. In the noncovalent complex formed after binding into the active site the carbonyl group of this inhibitor is accommodated into the oxyanion hole formed by the NH main chain groups of residues 143 to 145. The P1-P3 groups of the inhibitor establish similar interaction with the enzyme to those of equivalent groups in the natural peptide substrate, while the hydroxymethyl moiety of the inhibitor partly mimics the interactions established by the P1’ group of the peptide in the active site. Regarding the formation of the covalent complex, the reaction is initiated after the proton transfer from Cys145 to His41. Formation of the covalent hemithioacetal complex takes place by means of the nucleophilic attack of the Sg atom of Cys145 on the electron deficient carbonyl carbon atom and a proton transfer from the catalytic His41 to the carbonyl oxygen atom mediated by the hydroxyl group. Our findings can be used as a guide to propose modifications of the inhibitor in order to increase its affinity by the 3CL protease.</p>

2021 ◽  
Author(s):  
Carlos A. Ramos-Guzmán ◽  
J. Javier Ruiz-Pernía ◽  
Iñaki Tuñón

<p>We present the results of combined classical and QM/MM simulations for the inhibition of SARS-CoV-2 3CL protease by a recently proposed ketone-based covalent inhibitor, PF-00835231, that is under clinical trial. In the noncovalent complex formed after binding into the active site the carbonyl group of this inhibitor is accommodated into the oxyanion hole formed by the NH main chain groups of residues 143 to 145. The P1-P3 groups of the inhibitor establish similar interaction with the enzyme to those of equivalent groups in the natural peptide substrate, while the hydroxymethyl moiety of the inhibitor partly mimics the interactions established by the P1’ group of the peptide in the active site. Regarding the formation of the covalent complex, the reaction is initiated after the proton transfer from Cys145 to His41. Formation of the covalent hemithioacetal complex takes place by means of the nucleophilic attack of the Sg atom of Cys145 on the electron deficient carbonyl carbon atom and a proton transfer from the catalytic His41 to the carbonyl oxygen atom mediated by the hydroxyl group. Our findings can be used as a guide to propose modifications of the inhibitor in order to increase its affinity by the 3CL protease.</p>


2020 ◽  
Author(s):  
Carlos A. Ramos-Guzmán ◽  
J. Javier Ruiz-Pernía ◽  
Iñaki Tuñón

<p>We here investigate the mechanism of SARS-CoV-2 3CL protease inhibition by one of the most promising families of inhibitors, those containing an aldehyde group as warhead. These compounds are covalent inhibitors that inactivate the protease forming a stable hemithioacetal complex. Inhibitor 11a is a potent inhibitor that has been already tested in vitro and in animals. Using a combination of classical and QM/MM simulations we determined the binding mode of the inhibitor into the active site and the preferred rotameric state of the catalytic histidine. In the noncovalent complex the aldehyde group is accommodated into the oxyanion hole formed by the NH main chain groups of residues 143 to 145. In this pose, P1-P3 groups of the inhibitor mimic the interactions established by the natural peptide substrate. The reaction is initiated with the formation of the catalytic dyad ion pair after a proton transfer from Cys145 to His41. From this activated state, covalent inhibition proceeds with the nucleophilic attack of the deprotonated Sg atom of Cys145 to the aldehyde carbon atom and a water mediated proton transfer from the Ne atom of His41 to the aldehyde oxygen atom. Our proposed reaction transition state structure is validated by comparison with x-ray data of recently reported inhibitors, while the activation free energy obtained from our simulations agrees with the experimentally derived value, supporting the validity of our findings. Our study stresses the interplay between the conformational dynamics of the inhibitor and the protein with the inhibition mechanism and the importance of including conformational diversity for accurate predictions about the inhibition of the main protease of SARS-CoV-2. The conclusions derived from our work can also be used to rationalize the behavior of other recently proposed inhibitor compounds, including aldehydes and ketones with high inhibitory potency.</p>


2020 ◽  
Author(s):  
Carlos A. Ramos-Guzmán ◽  
J. Javier Ruiz-Pernía ◽  
Iñaki Tuñón

<p>We here investigate the mechanism of SARS-CoV-2 3CL protease inhibition by one of the most promising families of inhibitors, those containing an aldehyde group as warhead. These compounds are covalent inhibitors that inactivate the protease forming a stable hemithioacetal complex. Inhibitor 11a is a potent inhibitor that has been already tested in vitro and in animals. Using a combination of classical and QM/MM simulations we determined the binding mode of the inhibitor into the active site and the preferred rotameric state of the catalytic histidine. In the noncovalent complex the aldehyde group is accommodated into the oxyanion hole formed by the NH main chain groups of residues 143 to 145. In this pose, P1-P3 groups of the inhibitor mimic the interactions established by the natural peptide substrate. The reaction is initiated with the formation of the catalytic dyad ion pair after a proton transfer from Cys145 to His41. From this activated state, covalent inhibition proceeds with the nucleophilic attack of the deprotonated Sg atom of Cys145 to the aldehyde carbon atom and a water mediated proton transfer from the Ne atom of His41 to the aldehyde oxygen atom. Our proposed reaction transition state structure is validated by comparison with x-ray data of recently reported inhibitors, while the activation free energy obtained from our simulations agrees with the experimentally derived value, supporting the validity of our findings. Our study stresses the interplay between the conformational dynamics of the inhibitor and the protein with the inhibition mechanism and the importance of including conformational diversity for accurate predictions about the inhibition of the main protease of SARS-CoV-2. The conclusions derived from our work can also be used to rationalize the behavior of other recently proposed inhibitor compounds, including aldehydes and ketones with high inhibitory potency.</p>


2021 ◽  
Vol 22 (18) ◽  
pp. 9792
Author(s):  
Angela Parise ◽  
Isabella Romeo ◽  
Nino Russo ◽  
Tiziana Marino

The inhibition mechanism of the main protease (Mpro) of SARS-CoV-2 by ebselen (EBS) and its analog with a hydroxyl group at position 2 of the benzisoselenazol-3(2H)-one ring (EBS-OH) was studied by using a density functional level of theory. Preliminary molecular dynamics simulations on the apo form of Mpro were performed taking into account both the hydrogen donor and acceptor natures of the Nδ and Nε of His41, a member of the catalytic dyad. The potential energy surfaces for the formation of the Se–S covalent bond mediated by EBS and EBS-OH on Mpro are discussed in detail. The EBS-OH shows a distinctive behavior with respect to EBS in the formation of the noncovalent complex. Due to the presence of canonical H-bonds and noncanonical ones involving less electronegative atoms, such as sulfur and selenium, the influence on the energy barriers and reaction energy of the Minnesota hybrid meta-GGA functionals M06, M06-2X and M08HX, and the more recent range-separated hybrid functional wB97X were also considered. The knowledge of the inhibition mechanism of Mpro by the small protease inhibitors EBS or EBS-OH can enlarge the possibilities for designing more potent and selective inhibitor-based drugs to be used in combination with other antiviral therapies.


2013 ◽  
Vol 12 (08) ◽  
pp. 1341002 ◽  
Author(s):  
XIN ZHANG ◽  
MING LEI

The deamination process of isoxanthopterin catalyzed by isoxanthopterin deaminase was determined using the combined QM(PM3)/MM molecular dynamics simulations. In this paper, the updated PM3 parameters were employed for zinc ions and the initial model was built up based on the crystal structure. Proton transfer and following steps have been investigated in two paths: Asp336 and His285 serve as the proton shuttle, respectively. Our simulations showed that His285 is more effective than Aap336 in proton transfer for deamination of isoxanthopterin. As hydrogen bonds between the substrate and surrounding residues play a key role in nucleophilic attack, we suggested mutating Thr195 to glutamic acid, which could enhance the hydrogen bonds and help isoxanthopterin get close to the active site. The simulations which change the substrate to pterin 6-carboxylate also performed for comparison. Our results provide reference for understanding of the mechanism of deaminase and for enhancing the deamination rate of isoxanthopterin deaminase.


2021 ◽  
Vol 11 (3) ◽  
pp. 3780-3801

The widespread global COVID-19 pandemic due to the lack of specific treatment and the urgent situation requires the use of all resources to remedy this scourge. The current study aimed to use molecular docking tools to find potential drug candidates for treatment. The pyrano[2,3-c] pyrazole 5(a-e) was targeted against the Main protease (Mpro), which plays a vital role in the replication and transcription of the Corona viral genome. The 3CL Protease (PDB ID 6LU7) was modeled, and the compounds were docked using Autodock Vina software, and ADMET data have been studied. All synthesized compounds were well engaged into the active site of the main protease with strong hydrogen bond interaction and a good score of energy. The 5b have been classed as the best inhibitor with an energy score of -6.2 kcal/mol, similar to the one given by chloroquine (-6.2Kcal/mol). Moreover, the molecular interaction studies showed that protease structure had multiple active site residues for all studied compounds. Our finding confirms the potential of these derivatives as lead compounds against the selected target protein of coronavirus, which needs further analysis and dynamic simulation studies to propose then develop a new antiviral treatment.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2026
Author(s):  
Alexandra V. Krivitskaya ◽  
Maria G. Khrenova

Boronic acids are prospective compounds in inhibition of metallo-β-lactamases as they form covalent adducts with the catalytic hydroxide anion in the enzymatic active site upon binding. We compare this chemical reaction in the active site of the New Delhi metallo-β-lactamase (NDM-1) with the hydrolysis of the antibacterial drug imipenem. The nucleophilic attack occurs with the energy barrier of 14 kcal/mol for imipenem and simultaneously upon binding a boronic acid inhibitor. A boron atom of an inhibitor exhibits stronger electrophilic properties than the carbonyl carbon atom of imipenem in a solution that is quantified by atomic Fukui indices. Upon forming the prereaction complex between NDM-1 and inhibitor, the lone electron pair of the nucleophile interacts with the vacant p-orbital of boron that facilitates the chemical reaction. We analyze a set of boronic acid compounds with the benzo[b]thiophene core complexed with the NDM-1 and propose quantitative structure-sroperty relationship (QSPR) equations that can predict IC50 values from the calculated descriptors of electron density. These relations are applied to classify other boronic acids with the same core found in the database of chemical compounds, PubChem, and proposed ourselves. We demonstrate that the IC50 values for all considered benzo[b]thiophene-containing boronic acid inhibitors are 30–70 μM.


2016 ◽  
Vol 113 (11) ◽  
pp. 2928-2933 ◽  
Author(s):  
Yohta Fukuda ◽  
Ka Man Tse ◽  
Takanori Nakane ◽  
Toru Nakatsu ◽  
Mamoru Suzuki ◽  
...  

Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme–substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.


IUCrJ ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Jin Kyun Kim ◽  
Carrie L. Lomelino ◽  
Balendu Sankara Avvaru ◽  
Brian P. Mahon ◽  
Robert McKenna ◽  
...  

Human carbonic anhydrase II (hCA II) is a zinc metalloenzyme that catalyzes the reversible hydration/dehydration of CO2/HCO3 −. Although hCA II has been extensively studied to investigate the proton-transfer process that occurs in the active site, its underlying mechanism is still not fully understood. Here, ultrahigh-resolution crystallographic structures of hCA II cryocooled under CO2 pressures of 7.0 and 2.5 atm are presented. The structures reveal new intermediate solvent states of hCA II that provide crystallographic snapshots during the restoration of the proton-transfer water network in the active site. Specifically, a new intermediate water (WI′) is observed next to the previously observed intermediate water WI, and they are both stabilized by the five water molecules at the entrance to the active site (the entrance conduit). Based on these structures, a water network-restructuring mechanism is proposed, which takes place at the active site after the nucleophilic attack of OH− on CO2. This mechanism explains how the zinc-bound water (WZn) and W1 are replenished, which are directly responsible for the reconnection of the His64-mediated proton-transfer water network. This study provides the first `physical' glimpse of how a water reservoir flows into the hCA II active site during its catalytic activity.


2021 ◽  
Vol 50 (5) ◽  
pp. 1473-1483
Author(s):  
Fawad Ahmad ◽  
Saima Ikram ◽  
Jamshaid Ahmad ◽  
Irshad ur Rehman ◽  
Saeed Ullah Khattak ◽  
...  

The recent emergence of a novel coronavirus strain (SARS-CoV-2) has stimulated global efforts to identify potential drugs that target proteins expressed by this novel coronavirus. Among these, the main protease of SARS-CoV-2 (3CL-protease (3CLPro), also known as (MPro) is one of the best choices for the scientists to target. 3CLPro is involved in the processing of polyproteins into mature non-structural viral proteins. An X-ray crystallographic structure (PDB ID 6LU7) of this protein was obtained from the PDB database. ChemDiv libraries of ~80,000 antiviral and ~13,000 coronavirus-targeting molecules were screened against the 3D structure of 3CLPro of SARS-CoV-2. We have identified a panel of molecules that showed an activity and potentially block the active site of the SARS-CoV-2 main protease. These molecules can be investigated further to develop effective virus-inhibiting molecules to treat this highly distressing disease, causing extreme unrest across the globe.


Sign in / Sign up

Export Citation Format

Share Document