scholarly journals Direct and Telescopic Mechanochemical Synthesis of Higher-order Organic-Inorganic Hybrid Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design

Author(s):  
Zi xuan Ng ◽  
Davin Tan ◽  
Wei Liang Teo ◽  
felix leon ◽  
Xiaoyan Shi ◽  
...  

The ability to rationally design and predictably construct crystalline solids has been the hallmark of crystal engineering research over the past two decades. When building higher-order multicomponent cocrystals (i.e. crystals containing more than two constituents), the differential and hierarchical way molecules interact and assemble in the solidstate is of pinnacle importance. To date, numerous examples of multicomponent crystals comprising organic molecules leading to salts, cocrystals or ionic cocrystals have been reported. However, the crystal engineering of hybrid organicinorganic cocrystals with sophisticated inorganic building blocks is still poorly understood and mostly unexplored. Here, we reveal the first efficient mechanochemical synthesis of higher-order hybrid organic-inorganic cocrystals based on the structurally versatile – yet largely unexplored – cyclodiphos(V/V)azane heterosynthon building block. The novel hybrid ternary and quaternary multicomponent cocrystals herein reported are held together by synergistic intermolecular interactions (e.g., hydrogen- and halogen-bonding, Se-π and ion-dipole interactions). Notably, higher-order ternary and quaternary cocrystals can be readily obtained either via direct synthetic routes from its individual components, or via unprecedented telescopic approaches from lower-order cocrystal sets. In addition, computational modelling has also revealed that the formation of higher-order cocrystals is thermodynamically driven, and that bulk moduli and compressibilities are strongly dependent on the chemical composition and intermolecular forces present in the crystals, which offer untapped potential for optimizing material properties.

2021 ◽  
Author(s):  
Zi xuan Ng ◽  
Davin Tan ◽  
Wei Liang Teo ◽  
felix leon ◽  
Xiaoyan Shi ◽  
...  

The ability to rationally design and predictably construct crystalline solids has been the hallmark of crystal engineering research over the past two decades. When building higher-order multicomponent cocrystals (i.e. crystals containing more than two constituents), the differential and hierarchical way molecules interact and assemble in the solidstate is of pinnacle importance. To date, numerous examples of multicomponent crystals comprising organic molecules leading to salts, cocrystals or ionic cocrystals have been reported. However, the crystal engineering of hybrid organicinorganic cocrystals with sophisticated inorganic building blocks is still poorly understood and mostly unexplored. Here, we reveal the first efficient mechanochemical synthesis of higher-order hybrid organic-inorganic cocrystals based on the structurally versatile – yet largely unexplored – cyclodiphos(V/V)azane heterosynthon building block. The novel hybrid ternary and quaternary multicomponent cocrystals herein reported are held together by synergistic intermolecular interactions (e.g., hydrogen- and halogen-bonding, Se-π and ion-dipole interactions). Notably, higher-order ternary and quaternary cocrystals can be readily obtained either via direct synthetic routes from its individual components, or via unprecedented telescopic approaches from lower-order cocrystal sets. In addition, computational modelling has also revealed that the formation of higher-order cocrystals is thermodynamically driven, and that bulk moduli and compressibilities are strongly dependent on the chemical composition and intermolecular forces present in the crystals, which offer untapped potential for optimizing material properties.


1997 ◽  
Vol 53 (4) ◽  
pp. 569-586 ◽  
Author(s):  
C. B. Aakeröy

The area broadly described as crystal engineering is currently expanding at a brisk pace. Imaginative schemes for supramolecular synthesis, and correlations between molecular structure, crystal packing and physical properties are presented in the literature with increasing regularity. In practice, crystal engineering can be many different things; synthesis, statistical analysis of structural data, ab initio calculations etc. Consequently, we have been provided with a new playing field where chemists from traditionally unconnected parts of the spectrum have exchanged ideas, defined goals and made creative contributions to further progress not only in crystal engineering, but also in other disciplines of chemistry. Crystal engineering is delineated by the nature and structural consequences of intermolecular forces, and the way in which such interactions are utilized for controlling the assembly of molecular building blocks into infinite architectures. Although it is important to acknowledge that a crystal structure is the result of a subtle balance between a multitude of non-covalent forces, this article will focus on design strategies based upon the hydrogen bond and will present a range of approaches that have relied on the directionality and selectivity of such interactions in the synthesis of predictable one-, two- and three-dimensional motifs.


2020 ◽  
Vol 20 (9) ◽  
pp. 5908-5921 ◽  
Author(s):  
Anton V. Rozhkov ◽  
Anastasiya A. Eliseeva ◽  
Sergey V. Baykov ◽  
Bartomeu Galmés ◽  
Antonio Frontera ◽  
...  

2008 ◽  
Vol 63 (10) ◽  
pp. 1169-1174
Author(s):  
Laurent Plasseraud ◽  
Hélène Cattey ◽  
Philippe Richard

Abstract Treatment of the copper(I) trifluoromethanesulphonate toluene complex {[Cu(CF3SO3)]2 · C6H5Me} (1) with phthalazine (phtz, C8H6N2) in dichloromethane-acetonitrile solution yielded, via the bis(acetonitrile)tris(μ-phthalazine)dicopper(I) trifluoromethanesulphonate intermediate (2), the novel bis(phthalazine)tris(μ-phthalazine)dicopper(I) trifluoromethanesulphonate salt (3). Compound 3 was completely characterised and the molecular structure determined by single-crystal X-ray diffraction. Complex 3 crystallises in the monoclinic system, space group C2/c, with a = 26.9527(10), b = 10.9558(7), c = 19.2104(10) Å , β = 127.268(2)◦, V = 4514.3(4) Å3 and Z = 4. The copper(I) coordination geometry is tetrahedral, each copper centre being linked to four phthalazine molecules. Dicationic units of 3 which present an unusual paddle wheel-like shape constitute appropriate organometallic building blocks for the construction of a supramolecular solid-state architecture. The analysis of the packing of the molecules of 3 in the crystal revealed an unprecedented 2-dimensional network, resulting from intermolecular π-π and electrostatic interactions.


1998 ◽  
Vol 536 ◽  
Author(s):  
Yongchi Tian ◽  
A. D. Dinsmore ◽  
S. B. Qadri ◽  
B. R. Ratna

AbstractHere we report a nanoparticulate route to Y2O3 nanofibers (~50 nm in diameter and a few micrometers in length) and for the radial growth of ZnS spheres (200-800 nm diameter). Well-defined higher order structures are developed upon thermostatically aging the dispersions of monomeric nanocrystals. The shapes of the “macromolecules„ are correlated to primary monomeric nanocrystallites, the growing time and temperature, and surfactant templating agents. It is anticipated that this approach should inspire fabrication of nanoparticulate structures by using primary nanoparticles as monomers.


2019 ◽  
Vol 15 ◽  
pp. 2013-2019 ◽  
Author(s):  
Esther Nieland ◽  
Oliver Weingart ◽  
Bernd M Schmidt

ortho-Fluoroazobenzenes are a remarkable example of bistable photoswitches, addressable by visible light. Symmetrical, highly fluorinated azobenzenes bearing an iodine substituent in para-position were shown to be suitable supramolecular building blocks both in solution and in the solid state in combination with neutral halogen bonding acceptors, such as lutidines. Therefore, we investigate the photochemistry of a series of azobenzene photoswitches. Upon introduction of iodoethynyl groups, the halogen bonding donor properties are significantly strengthened in solution. However, the bathochromic shift of the π→π* band leads to a partial overlap with the n→π* band, making it slightly more difficult to address. The introduction of iodine substituents is furthermore accompanied with a diminishing thermal half-life. A series of three azobenzenes with different halogen bonding donor properties are discussed in relation to their changing photophysical properties, rationalized by DFT calculations.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2001
Author(s):  
Maresa Sonnabend ◽  
Suzanne G. Aubin ◽  
Annette M. Schmidt ◽  
Marc C. Leimenstoll

Due to reasons of sustainability and conservation of resources, polyurethane (PU)-based systems with preferably neutral carbon footprints are in increased focus of research and development. The proper design and development of bio-based polyols are of particular interest since such polyols may have special property profiles that allow the novel products to enter new applications. Sophorolipids (SL) represent a bio-based toolbox for polyol building blocks to yield diverse chemical products. For a reasonable evaluation of the potential for PU chemistry, however, further investigations in terms of synthesis, derivatization, reproducibility, and reactivity towards isocyanates are required. It was demonstrated that SL can act as crosslinker or as plasticizer in PU systems depending on employed stoichiometry. (ω-1)-hydroxyl fatty acids can be derived from SL and converted successively to polyester polyols and PU. Additionally, (ω-1)-hydroxyl fatty acid azides can be prepared indirectly from SL and converted to A/B type PU by Curtius rearrangement.


2017 ◽  
Vol 56 (6) ◽  
pp. 3512-3516 ◽  
Author(s):  
Stefano Canossa ◽  
Alessia Bacchi ◽  
Claudia Graiff ◽  
Paolo Pelagatti ◽  
Giovanni Predieri ◽  
...  

2021 ◽  
Author(s):  
Tetyana Koso ◽  
Marco Beaumont ◽  
Blaise Tardy ◽  
Daniel Rico del Cerro ◽  
Samuel Eyley ◽  
...  

Gas-phase acylation of cellulose is an attractive method for modifying the surface properties of cellulosics. However, little is known concerning the regioselectivity of the chemistry, in terms of which cellulose positions are preferentially acylated and if acylation can be restricted to the surface, preserving crystallinities/morphologies. Consequently, we reexplore simple gas-phase acetylation of modern-day cellulosic building blocks – cellulose nanocrystals, pulps, regenerated fibre and aerogels. The gas-phase acetylation is shown to be highly regioselective for the C6-OH, is further supported with computational modelling. This contrasts with liquid-state acetylation, highlighting that the gas-phase chemistry is much more controllable, yet with similar kinetics to the uncatalyzed liquid-phase reactions. Furthermore, this method preserves both the native crystalline structure of cellulose and the supramolecular morphologies of even delicate cellulosic constructs (aerogel exhibiting retention of chiral cholesteric liquid crystalline phases). Therefore, we are convinced that this methodology will lead to more rapid adoption of precisely tailored and cellulosic materials


Sign in / Sign up

Export Citation Format

Share Document