scholarly journals Water Activity Regulates CO2 Reduction in Gas-Diffusion Electrodes

Author(s):  
Nathan Nesbitt ◽  
Wilson Smith

<p>Electrochemical CO<sub>2</sub> reduction has recently reached current densities as high as 1 A cm<sup>-2</sup>, enabled by improving diffusion of CO<sub>2</sub> from the gas phase to the electrocatalyst by use of gas-diffusion electrodes (GDEs) and by improving electrolyte ionic conductivity with concentrated hydroxide electrolytes (7 M KOH). Despite such high solute concentrations, the dilute electrolyte assumption is commonly used to evaluate the thermodynamics of the system, specifically reaction equilibrium potential and reaction rate expression. Here we establish a paradigm shift by demonstrating how to properly include the activity of water and solutes and highlighting corrections to associated reaction thermodynamics.</p>

2021 ◽  
Author(s):  
Nathan Nesbitt ◽  
Wilson Smith

<p>Electrochemical CO<sub>2</sub> reduction has recently reached current densities as high as 1 A cm<sup>-2</sup>, enabled by improving diffusion of CO<sub>2</sub> from the gas phase to the electrocatalyst by use of gas-diffusion electrodes (GDEs) and by improving electrolyte ionic conductivity with concentrated hydroxide electrolytes (7 M KOH). Despite such high solute concentrations, the dilute electrolyte assumption is commonly used to evaluate the thermodynamics of the system, specifically reaction equilibrium potential and reaction rate expression. Here we establish a paradigm shift by demonstrating how to properly include the activity of water and solutes and highlighting corrections to associated reaction thermodynamics.</p>


2019 ◽  
Vol 12 (5) ◽  
pp. 1442-1453 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The substantial implications of high current densities on the local reaction environment and design of catalysts for electrochemical CO2 reduction are addressed. The presented perspectives also reflect on current practices within the field and offer new opportunities for both future catalyst and system-focused research efforts.


2022 ◽  
Author(s):  
Ying Kong ◽  
Huifang Hu ◽  
Menglong Liu ◽  
Yuhui Hou ◽  
Viliam Kolivoska ◽  
...  

The most promising strategy to up-scale the electrochemical CO2 reduction reaction (ec-CO2RR) is based on the use of gas diffusion electrodes (GDEs) that allow current densities close to the range of 1 A/cm2 to be reached. At such high current densities, however, the flooding of the GDE cathode is often observed in CO2 electrolysers. Flooding hinders the access of CO2 to the catalyst, and by thus leaving space for (unwanted) hydrogen evolution, it usually leads to a decrease of the observable Faradaic efficiency of CO2 reduction products. To avoid flooding as much as possible has thus become one of the most important aims of to-date ec-CO2RR engineering, and robust analytical methods that can quantitatively assess flooding are now in demand. As flooding is very closely related to the formation of carbonate salts within the GDE structure, in this paper we use alkali (in particular, potassium) carbonates as a tracer of flooding. We present a novel analytical approach —based on the combination of cross-sectional energy-dispersive X-ray (EDX) mapping and inductively coupled plasma mass spectrometry (ICP--MS) analysis— that can not only visualise, but can also quantitatively describe the electrolysis time dependent flooding in GDEs, leading to a better understanding of electrolyser malfunctions.


2021 ◽  
Author(s):  
Nathan Nesbitt ◽  
Wilson Smith

<p>Here, in this research article we develop an electrochemical flow cell for EC-AFM of GDEs for CO<sub>2</sub>R and provide an in-depth analysis of challenges, best practices, and possible future improvements for the technique. Specifically, we demonstrate continuous operando EC-AFM topography and mechanical property map recording during CO<sub>2</sub>R reactor operation at 1, 10, and 100 mA cm<sup>-2</sup>.<b></b></p>


2021 ◽  
Author(s):  
Nathan Nesbitt ◽  
Wilson Smith

<p>Here, in this research article we develop an electrochemical flow cell for EC-AFM of GDEs for CO<sub>2</sub>R and provide an in-depth analysis of challenges, best practices, and possible future improvements for the technique. Specifically, we demonstrate continuous operando EC-AFM topography and mechanical property map recording during CO<sub>2</sub>R reactor operation at 1, 10, and 100 mA cm<sup>-2</sup>.<b></b></p>


The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Wanda V. Fernandez ◽  
Rocío T. Tosello ◽  
José L. Fernández

Gas diffusion electrodes based on nanoporous alumina membranes electrocatalyze hydrogen oxidation at high diffusion-limiting current densities with fast response times.


2021 ◽  
Author(s):  
Yanfang Song ◽  
Joao R. C. Junqueira ◽  
Nivedita Sikdar ◽  
Denis Öhl ◽  
Stefan Dieckhöfer ◽  
...  

Author(s):  
Yanfang Song ◽  
Joao R. C. Junqueira ◽  
Nivedita Sikdar ◽  
Denis Öhl ◽  
Stefan Dieckhöfer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document