Optimizing Reaction Conditions and Gas Diffusion Electrodes Applied in the CO2 Reduction Reaction to Formate to Reach Current Densities up to 1.8 A cm–2

Author(s):  
Armin Löwe ◽  
Maximilian Schmidt ◽  
Fabian Bienen ◽  
Dennis Kopljar ◽  
Norbert Wagner ◽  
...  
ACS Catalysis ◽  
2021 ◽  
pp. 5850-5864
Author(s):  
Stephen Paul ◽  
Yi-Lin Kao ◽  
Lingmei Ni ◽  
Rayko Ehnert ◽  
Iris Herrmann-Geppert ◽  
...  

2018 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The presented modelling results in this article show that electrochemical CO2 reduction performed at commercially-relevant current densities will ultimately lead to locally alkaline reaction conditions regardless of the electrolyte, configuration and reasonable mass transport scenarios. Discussed in detail are the large implications that this result has for the CO2 reduction reaction itself, and the current way in which catalysts are designed and tested in different electrochemical cell architectures.


2022 ◽  
Author(s):  
Ying Kong ◽  
Huifang Hu ◽  
Menglong Liu ◽  
Yuhui Hou ◽  
Viliam Kolivoska ◽  
...  

The most promising strategy to up-scale the electrochemical CO2 reduction reaction (ec-CO2RR) is based on the use of gas diffusion electrodes (GDEs) that allow current densities close to the range of 1 A/cm2 to be reached. At such high current densities, however, the flooding of the GDE cathode is often observed in CO2 electrolysers. Flooding hinders the access of CO2 to the catalyst, and by thus leaving space for (unwanted) hydrogen evolution, it usually leads to a decrease of the observable Faradaic efficiency of CO2 reduction products. To avoid flooding as much as possible has thus become one of the most important aims of to-date ec-CO2RR engineering, and robust analytical methods that can quantitatively assess flooding are now in demand. As flooding is very closely related to the formation of carbonate salts within the GDE structure, in this paper we use alkali (in particular, potassium) carbonates as a tracer of flooding. We present a novel analytical approach —based on the combination of cross-sectional energy-dispersive X-ray (EDX) mapping and inductively coupled plasma mass spectrometry (ICP--MS) analysis— that can not only visualise, but can also quantitatively describe the electrolysis time dependent flooding in GDEs, leading to a better understanding of electrolyser malfunctions.


2018 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The presented modelling results in this article show that electrochemical CO2 reduction performed at commercially-relevant current densities will ultimately lead to locally alkaline reaction conditions regardless of the electrolyte, configuration and reasonable mass transport scenarios. Discussed in detail are the large implications that this result has for the CO2 reduction reaction itself, and the current way in which catalysts are designed and tested in different electrochemical cell architectures.


2021 ◽  
Author(s):  
Shima Alinejad ◽  
Jonathan Quinson ◽  
Yao Li ◽  
Ying Kong ◽  
Sven Reichenberger ◽  
...  

The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract a rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. In particular a zero-gap design shows promising features for upscaling to the commercial scale. In this study, we develop further our recently introduced zero-gap GDE setup for the CO2RR using an Au electrocatalyst as model system and identify/report the key experimental parameters to control in the catalyst layer preparation in order to optimize the activity and selectivity of the catalyst.


2021 ◽  
Author(s):  
Nathan Nesbitt ◽  
Wilson Smith

<p>Electrochemical CO<sub>2</sub> reduction has recently reached current densities as high as 1 A cm<sup>-2</sup>, enabled by improving diffusion of CO<sub>2</sub> from the gas phase to the electrocatalyst by use of gas-diffusion electrodes (GDEs) and by improving electrolyte ionic conductivity with concentrated hydroxide electrolytes (7 M KOH). Despite such high solute concentrations, the dilute electrolyte assumption is commonly used to evaluate the thermodynamics of the system, specifically reaction equilibrium potential and reaction rate expression. Here we establish a paradigm shift by demonstrating how to properly include the activity of water and solutes and highlighting corrections to associated reaction thermodynamics.</p>


2020 ◽  
Author(s):  
Shaoxuan Ren ◽  
Arthur Fink ◽  
Eric Lees ◽  
Zishuai Zhang ◽  
Wen Yu Wu ◽  
...  

Abstract The highest performance flow cells capable of electrolytically converting CO2 into higher value chemicals and fuels pass a concentrated hydroxide electrolyte across the cathode. A major problem for CO2 electrolysis is that this strongly alkaline medium converts the majority of CO2 into unreactive HCO3– and CO32– rather than CO2 reduction reaction (CO2RR) products. The electrolysis of CO (instead of CO2) does not suffer from this same problem because CO does not react with hydroxide. Moreover, CO can be more readily converted into products containing two or more carbon atoms (i.e., C2+ products). While several solid-state electrocatalysts have proven competent at converting CO into C2+ products, we demonstrate here that molecular electrocatalysts are also effective at mediating this transformation in a flow cell. Using a molecular copper phthalocyanine (CuPc) electrocatalyst, CO was electrolyzed into C2+ products at high rates of product formation (i.e., current densities J ≥200 mA/cm2), and at high Faradaic efficiencies for C2+ production (FEC2+; 72% at 200 mA/cm2). These findings present a new class of electrocatalysts for making carbon-neutral chemicals and fuels.


2019 ◽  
Vol 12 (5) ◽  
pp. 1442-1453 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The substantial implications of high current densities on the local reaction environment and design of catalysts for electrochemical CO2 reduction are addressed. The presented perspectives also reflect on current practices within the field and offer new opportunities for both future catalyst and system-focused research efforts.


Author(s):  
Min Zhang ◽  
Wenbo Wei ◽  
Shenghua Zhou ◽  
Dong-Dong Ma ◽  
Aihui Cao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) to value-added and readily collectable liquid products is promising but remains a great challenge due to the lack of efficient and robust electrocatalysts. Herein, a...


Sign in / Sign up

Export Citation Format

Share Document