scholarly journals A Drug Repurposing Approach to Identify Therapeutics by Screening Medicines for Malaria Ventures Exploiting SARS-CoV-2 Main Protease

Author(s):  
Rashmi Tyagi ◽  
Anubrata Paul ◽  
V. Samuel Raj ◽  
Krishna Kumar Ojha ◽  
Manoj Kumar Yadav

<p>COVID-19 pandemic makes the human-kind standstill and results in high morbidity and mortality cases worldwide. Still, there are no approved antiviral drugs with proven efficacy nor any therapeutic vaccines to combat the disease as per the current date. In the present study, SARS-CoV-2 main protease (Mpro) has been taken as a potential drug target considering its crucial role in virus propagation. We have used 400 diverse bioactive inhibitors with proven antibacterial and antiviral properties for screening against Mpro target. Our screening result identifies ten compounds with higher binding affinity than N3 (used as a reference compound to validate the experiment). All the compounds possess desire physicochemical properties. Later on, in-depth docking and superimposition of selected complexes confirm that only three compounds (MMV1782211, MMV1782220 and MMV1578574) are actively interacting with the catalytic domain of Mpro. </p> <p>Furthermore, the selected three molecules complexed with Mpro and N3-Mpro as control are subjected to molecular dynamics simulation study (root means square deviation, root mean square fluctuation, hydrogen bonding, solvent-accessible area and radius of gyration). MMV1782211-Mpro complex shows a strong and stable interaction as compared to others. The MM/PBSA free energy calculation shows the highest binding free energy of –115.8 kJ/mol for MMV1782211 compound also cross-confirms our molecular docking study. Therefore, our <i>in silico</i> findings become very interesting towards developing alternative medicine against SARS-CoV-2 Mpro target. So, we can expect prompt actions in this direction to combat the COVID-19.</p>

2021 ◽  
Author(s):  
Rashmi Tyagi ◽  
Anubrata Paul ◽  
V. Samuel Raj ◽  
Krishna Kumar Ojha ◽  
Manoj Kumar Yadav

<p>COVID-19 pandemic makes the human-kind standstill and results in high morbidity and mortality cases worldwide. Still, there are no approved antiviral drugs with proven efficacy nor any therapeutic vaccines to combat the disease as per the current date. In the present study, SARS-CoV-2 main protease (Mpro) has been taken as a potential drug target considering its crucial role in virus propagation. We have used 400 diverse bioactive inhibitors with proven antibacterial and antiviral properties for screening against Mpro target. Our screening result identifies ten compounds with higher binding affinity than N3 (used as a reference compound to validate the experiment). All the compounds possess desire physicochemical properties. Later on, in-depth docking and superimposition of selected complexes confirm that only three compounds (MMV1782211, MMV1782220 and MMV1578574) are actively interacting with the catalytic domain of Mpro. </p> <p>Furthermore, the selected three molecules complexed with Mpro and N3-Mpro as control are subjected to molecular dynamics simulation study (root means square deviation, root mean square fluctuation, hydrogen bonding, solvent-accessible area and radius of gyration). MMV1782211-Mpro complex shows a strong and stable interaction as compared to others. The MM/PBSA free energy calculation shows the highest binding free energy of –115.8 kJ/mol for MMV1782211 compound also cross-confirms our molecular docking study. Therefore, our <i>in silico</i> findings become very interesting towards developing alternative medicine against SARS-CoV-2 Mpro target. So, we can expect prompt actions in this direction to combat the COVID-19.</p>


Author(s):  
Trina Ekawati Tallei ◽  
Sefren Geiner Tumilaar ◽  
Nurdjannah Jane Niode ◽  
Fatimawali Fatimawali ◽  
Billy Johnson Kepel ◽  
...  

Since the outbreak of the COVID-19 (Coronavirus Disease 19) pandemic, researchers have been trying to investigate several active compounds found in plants that have the potential to inhibit the proliferation of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2). The present study aimed to evaluate bioactive compounds found in plants by using a molecular docking approach to inhibit the Main Protease (Mpro) and Spike (S) glycoprotein of SARS-CoV-2. The evaluation was performed on the docking scores calculated using AutoDock Vina as a docking engine. A rule of five (RO5) was calculated to determine whether a compound meets the criteria as an active drug orally in humans. The determination of the docking score was done by selecting the best conformation of the protein-ligand complex that had the highest affinity (most negative Gibbs' free energy of binding / &Delta;G). As a comparison, nelfinavir (an antiretroviral drug), chloroquine and hydroxychloroquine sulfate (anti-malarial drugs recommended by the FDA as emergency drugs) were used. The results showed that hesperidin, nabiximols, pectolinarin, epigallocatechin gallate, and rhoifolin had better poses than nelfinavir, chloroquine, and hydroxychloroquine sulfate as spike glycoprotein inhibitors. Hesperidin, rhoifolin, pectolinarin, and nabiximols had about the same pose as nelfinavir, but were better than chloroquine and hydroxychloroquine sulfate as Mpro inhibitors. These plant compounds have the potential to be developed as specific therapeutic agents against COVID-19. Several natural compounds of plants evaluated in this study showed better binding free energy compared to nelfinavir, chloroquine, and hydroxychloroquine sulfate which so far are recommended in the treatment of COVID-19. As judged by the RO5 and previous study by others, the compounds kaempferol, herbacetin, eugenol, and 6-shogaol have good oral bioavailability, so they are also seen as promising candidates for the development lead compounds to treat infections caused by SARS-CoV-2.


2019 ◽  
Vol 19 (2) ◽  
pp. 461
Author(s):  
Herlina Rasyid ◽  
Bambang Purwono ◽  
Thomas S Hofer ◽  
Harno Dwi Pranowo

Lung cancer was a second common cancer case due to the high cigarette smoking activity both in men and women. One of protein receptor which plays an important role in the growth of the tumor is Epidermal Growth Factor Receptor (EGFR). EGFR protein is the most frequent protein mutation in cancer and promising target to inhibit the cancer growth. In this work, the stability of the hydrogen bond as the main interaction in the inhibition mechanism of cancer will be evaluated using molecular dynamics simulation. There were two compounds (A1 and A2) as new potential inhibitors that were complexed against the EGFR protein. The dynamic properties of each complexed were compared with respect to erlotinib against EGFR. The result revealed that both compounds had an interaction in the main catalytic area of protein receptor which is at methionine residue. Inhibitor A1 showed additional interactions during simulation time but the interactions tend to be weak. Inhibitor A2 displayed a more stable interaction. Following dynamics simulation, binding free energy calculation was performed by two scoring techniques MM/GB(PB)SA method and gave a good correlation with the stability of the complex. Furthermore, potential inhibitor A2 had a lower binding free energy as a direct consequence of the stability of hydrogen bond interaction.


2020 ◽  
Author(s):  
arun kumar ◽  
Sharanya C.S ◽  
Abhithaj J ◽  
Dileep Francis ◽  
Sadasivan C

Since its first report in December 2019 from China the COVID-19 pandemic caused by the beta-coronavirus SARS-CoV-2 has spread at an alarming pace infecting about 26 lakh, and claiming the lives of more than 1.8 lakh individuals across the globe. Although social quarantine measures have succeeded in containing the spread of the virus to some extent, the lack of a clinically approved vaccine or drug remains the biggest bottleneck in combating the pandemic. Drug repurposing can expedite the process of drug development by identifying known drugs which are effective against SARS-CoV-2. The SARS-CoV-2 main protease is a promising drug target due to its indispensable role in viral multiplication inside the host. In the present study an E-pharmacophore hypothesis was generated using the crystal structure of the viral protease in complex with an imidazole carbaximide inhibitor as the drug target. Drugs available in the superDRUG2 database were used to identify candidate drugs for repurposing. The hits were further screened using a structure based approach involving molecular docking at different precisions. The most promising drugs were subjected to binding free energy estimation using MM-GBSA. Among the 4600 drugs screened 17 drugs were identified as candidate inhibitors of the viral protease based on the glide scores obtained from molecular docking. Binding free energy calculation showed that six drugs viz, Binifibrate, Macimorelin acetate, Bamifylline, Rilmazafon, Afatinib and Ezetimibe can act as potential inhibitors of the viral protease.


2021 ◽  
Vol 22 (13) ◽  
pp. 6874
Author(s):  
Francesco Morena ◽  
Chiara Argentati ◽  
Ilaria Tortorella ◽  
Carla Emiliani ◽  
Sabata Martino

Herein, we have generated ssRNA aptamers to inhibit SARS-CoV-2 Mpro, a protease necessary for the SARS-CoV-2 coronavirus replication. Because there is no aptamer 3D structure currently available in the databanks for this protein, first, we modeled an ssRNA aptamer using an entropic fragment-based strategy. We refined the initial sequence and 3D structure by using two sequential approaches, consisting of an elitist genetic algorithm and an RNA inverse process. We identified three specific aptamers against SARS-CoV-2 Mpro, called MAptapro, MAptapro-IR1, and MAptapro-IR2, with similar 3D conformations and that fall in the dimerization region of the SARS-CoV-2 Mpro necessary for the enzymatic activity. Through the molecular dynamic simulation and binding free energy calculation, the interaction between the MAptapro-IR1 aptamer and the SARS-CoV-2 Mpro enzyme resulted in the strongest and the highest stable complex; therefore, the ssRNA MAptapro-IR1 aptamer was selected as the best potential candidate for the inhibition of SARS-CoV-2 Mpro and a perspective therapeutic drug for the COVID-19 disease.


2020 ◽  
Author(s):  
arun kumar ◽  
Sharanya C.S ◽  
Abhithaj J ◽  
Dileep Francis ◽  
Sadasivan C

Since its first report in December 2019 from China the COVID-19 pandemic caused by the beta-coronavirus SARS-CoV-2 has spread at an alarming pace infecting about 26 lakh, and claiming the lives of more than 1.8 lakh individuals across the globe. Although social quarantine measures have succeeded in containing the spread of the virus to some extent, the lack of a clinically approved vaccine or drug remains the biggest bottleneck in combating the pandemic. Drug repurposing can expedite the process of drug development by identifying known drugs which are effective against SARS-CoV-2. The SARS-CoV-2 main protease is a promising drug target due to its indispensable role in viral multiplication inside the host. In the present study an E-pharmacophore hypothesis was generated using the crystal structure of the viral protease in complex with an imidazole carbaximide inhibitor as the drug target. Drugs available in the superDRUG2 database were used to identify candidate drugs for repurposing. The hits were further screened using a structure based approach involving molecular docking at different precisions. The most promising drugs were subjected to binding free energy estimation using MM-GBSA. Among the 4600 drugs screened 17 drugs were identified as candidate inhibitors of the viral protease based on the glide scores obtained from molecular docking. Binding free energy calculation showed that six drugs viz, Binifibrate, Macimorelin acetate, Bamifylline, Rilmazafon, Afatinib and Ezetimibe can act as potential inhibitors of the viral protease.


Sign in / Sign up

Export Citation Format

Share Document