scholarly journals Stable CAAC-based Ruthenium Complexes for Dynamic Olefin Metathesis Under Mild Conditions

Author(s):  
Oleksandr Kravchenko ◽  
Brian J.J. Timmer ◽  
Maurice Biedermann ◽  
Andrew Kentaro Inge ◽  
Olof Ramstrom

<p>A series of olefin metathesis catalysts bearing cyclic (alkyl)(amino)carbene (CAAC) ligands of varying size and steric demand has been synthesized and evaluated in ring-closing-, self-, and cross-metathesis reactions at room temperature. The catalysts were also probed for potential applications in dynamic covalent chemistry. The majority of the catalysts showed high stability, and remained active in the reaction mixtures for several days, including in methanol-based solutions. Higher temperatures could be used to control the reactivity towards sterically challenging substrates, enabling formation of tetrasubstituted olefins. The CAAC complexes exhibited remarkable functional group tolerance towards heteroaromatic and nucleophilic additives, making them potentially useful in the screening of biologically active compounds.</p>

2021 ◽  
Author(s):  
Oleksandr Kravchenko ◽  
Brian J.J. Timmer ◽  
Maurice Biedermann ◽  
Andrew Kentaro Inge ◽  
Olof Ramstrom

<p>A series of olefin metathesis catalysts bearing cyclic (alkyl)(amino)carbene (CAAC) ligands of varying size and steric demand has been synthesized and evaluated in ring-closing-, self-, and cross-metathesis reactions at room temperature. The catalysts were also probed for potential applications in dynamic covalent chemistry. The majority of the catalysts showed high stability, and remained active in the reaction mixtures for several days, including in methanol-based solutions. Higher temperatures could be used to control the reactivity towards sterically challenging substrates, enabling formation of tetrasubstituted olefins. The CAAC complexes exhibited remarkable functional group tolerance towards heteroaromatic and nucleophilic additives, making them potentially useful in the screening of biologically active compounds.</p>


Synthesis ◽  
2017 ◽  
Vol 49 (13) ◽  
pp. 2787-2802 ◽  
Author(s):  
María Sánchez-Roselló ◽  
Carlos del Pozo ◽  
Javier Miró

The high stability and functional group compatibility of ruthenium carbene complexes confer them a great ability to catalyze domino processes. For this reason, the combination of metathesis reactions with additional transformations in a domino fashion has been exploited extensively, with the result of expanding the utility of ruthenium carbene complexes beyond that of just olefin metathesis. Among those domino processes, it is worth mentioning the sequence of cross-metathesis/intramolecular Michael addition, which allows for the generation of a wide variety of carbo- and heterocycles in a very simple manner, taking advantage of the benefits of domino reactions. Carbon-, oxygen- and nitrogen-centered nucleophiles are good partners in this protocol, the versatility of which has been illustrated with the synthesis of several biologically important compounds.1 Introduction2 Cross Metathesis/Intramolecular Aza-Michael Addition Sequences3 Cross Metathesis/Intramolecular Oxa-Michael Addition Sequences4 Cross Metathesis/Intramolecular Michael Addition Sequences5 Conclusions and Outlook


2015 ◽  
Vol 11 ◽  
pp. 2038-2056 ◽  
Author(s):  
Lorenzo Piola ◽  
Fady Nahra ◽  
Steven P Nolan

Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.


2017 ◽  
Vol 13 ◽  
pp. 2023-2027 ◽  
Author(s):  
Hao Wang ◽  
Cui Chen ◽  
Weibing Liu ◽  
Zhibo Zhu

We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-(tert-butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-(tert-butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.


Synthesis ◽  
2017 ◽  
Vol 49 (18) ◽  
pp. 4303-4308 ◽  
Author(s):  
Dong Li ◽  
Chuancheng Zhang ◽  
Qiang Yue ◽  
Zhen Xiao ◽  
Xianglan Wang ◽  
...  

An efficient protocol for the synthesis of O-aroyl-N,N-dimethylhydroxylamines, which are important electrophilic amination reagents, is described. The reaction between carboxylic acids and N,N-dimethylformamide is mediated by hypervalent iodine and occurs under mild conditions at room temperature to give the desired products in good yields. The process shows good functional group compatibility and air and moisture tolerance.


2000 ◽  
Vol 78 (6) ◽  
pp. 838-845 ◽  
Author(s):  
Yun-Jin Hu ◽  
Romyr Dominique ◽  
Sanjoy Kumar Das ◽  
René Roy

A novel isomerization of O-allyl glycosides into prop-1-enyl glycosides was observed instead of cross-metathesis during an olefin metathesis reaction using Grubbs' ruthenium benzylidene catalyst (Cy3P)2RuCl2=CHPh (1), N-allyltritylamine, and N,N-diisopropylethylamine as necessary auxiliary reagents. In the search for a better catalytic system, it has been found that dichlorotris(triphenylphosphine)ruthenium(II), [(C6H5)3P]3RuCl2, (2) was much more efficient for the isomerization of allylic ethers. The labile prop-1-enyl group was easily hydrolyzed using HgCl2-HgO and the hemiacetals (25-32) were isolated in excellent yields (ca. 90%).Key words: allyl ether, carbohydrate, Grubbs' catalyst, isomerization, metathesis, deprotection.


2021 ◽  
Author(s):  
Jordan D. Galloway ◽  
Cristian Sarabia ◽  
James C. Fettinger ◽  
Hrant Hratchian ◽  
Ryan Baxter

We report a new chemical reagent for transnitrosation under mild experimental conditions. This new reagent is stable to air and moisture across a broad range of temperatures, and is effective for transnitrosation in multiple solvents. Compared to traditional nitrosation methods, our reagent shows high functional group tolerance for substrates that are susceptible to oxidation or reversible transnitrosation. Several challenging nitroso-compounds are accessed here for the first time, including 15N isotopologues. X-ray data confirms two rotational isomers of the reagent are configurationally stable at room temperature, although only one isomer is effective for transnitrosation. Computational analysis describes the energetics of rotamer interconversion, including interesting geometry-dependent hybridization ef-fects.


Synlett ◽  
2019 ◽  
Vol 30 (03) ◽  
pp. 319-324 ◽  
Author(s):  
Zhaozhan Wang ◽  
Tao Song ◽  
Yong Yang

A one-pot direct synthesis of a wide range of biologically active benzimidazoles through coupling of phenylenediamines and aldehydes catalyzed by a highly recyclable nonnoble cobalt nanocomposite was developed. A broad set of benzimidazoles can be efficiently synthesized in high yields and with good functional-group tolerance under additive- and oxidant-free mild conditions. The catalyst can be easily recycled for successive uses, and the process permits gram-scale syntheses of benzimidazoles.


Sign in / Sign up

Export Citation Format

Share Document