scholarly journals Eightfold Electrophilic Methylation of Octacyanotungstate [W(CN)8]4−/3−: Preparation of Homoleptic, Eight-coordinate Methylisocyanide Complexes [W(CNMe)8]4+/5+

Author(s):  
Malte Sellin ◽  
Susanne Margot Rupf ◽  
Ulrich Abram ◽  
Moritz Malischewski

Homoleptic eight-fold coordinated methylisocyanide complexes of W(IV) and W(V) have been prepared for the first time. The reaction of [NBu4]4[W(CN)8] with methyl triflate MeOTf gives [W(CNMe)8][OTf]4. The even stronger methylating mixture of methyl fluoride MeF and arsenic pentafluoride AsF5 in liquid sulfur dioxide SO2 is able to fully alkylate both [NBu4]4[W(CN)8] and [NBu4]3[W(CN)8]. The paramagnetic octakis(methylisocyanide)- tungsten(V) [W(CNMe)8][AsF6]5 is thermally highly unstable above −30 °C. All compounds have been characterized via single-crystal X-ray diffraction, IR and Raman, as well as NMR or EPR spectroscopy<br>

2021 ◽  
Author(s):  
Malte Sellin ◽  
Susanne Margot Rupf ◽  
Ulrich Abram ◽  
Moritz Malischewski

Homoleptic eight-fold coordinated methylisocyanide complexes of W(IV) and W(V) have been prepared for the first time. The reaction of [NBu4]4[W(CN)8] with methyl triflate MeOTf gives [W(CNMe)8][OTf]4. The even stronger methylating mixture of methyl fluoride MeF and arsenic pentafluoride AsF5 in liquid sulfur dioxide SO2 is able to fully alkylate both [NBu4]4[W(CN)8] and [NBu4]3[W(CN)8]. The paramagnetic octakis(methylisocyanide)- tungsten(V) [W(CNMe)8][AsF6]5 is thermally highly unstable above −30 °C. All compounds have been characterized via single-crystal X-ray diffraction, IR and Raman, as well as NMR or EPR spectroscopy<br>


2007 ◽  
Vol 63 (11) ◽  
pp. i186-i186 ◽  
Author(s):  
Stanislav Ferdov ◽  
Uwe Kolitsch ◽  
Christian Lengauer ◽  
Ekkehart Tillmanns ◽  
Zhi Lin ◽  
...  

The structure of the layered noncentrosymmetric titanosilicate AM-1 (also known as JDF-L1, disodium titanium tetrasilicate dihydrate), Na4Ti2Si8O22·4H2O, grown as small single crystals without the use of organics, has been refined from single-crystal X-ray diffraction data. The H atom has been located for the first time, and the hydrogen-bonding scheme is also characterized by IR and Raman spectroscopy. All atoms are in general positions except for the Na, the Ti, one Ti-bound O, one Si-bound O and the water O atoms (site symmetries 2, 4, 4, 2 and 2, respectively).


2017 ◽  
Vol 12 (11) ◽  
pp. 1934578X1701201
Author(s):  
Qiao Xu ◽  
Miao-Miao Zhang ◽  
Shu-Zhen Yana ◽  
Lu-Fen Cao ◽  
Qiang Lia ◽  
...  

Two symmetrical dibenzoquinone derivatives were isolated from solid cultures of the fungus Acremonium cavaraeanum. Compound 1 was new and identified as 2,7-dihydroxy-3,6,9-trimethyl-9 H-xanthene-1,4,5,8-tetraone. Compound 2 was 3,3’,6,6’-tetrahydroxy-4,4’-dimethyl-1,1’-bi- p-benzoquinone, i.e. oosporein, which was reported from A. cavaraeanum for the first time. The structure of the dibenzoquinone (1) was unambiguously elucidated using a combination of MS, IR, 1D- and 2D-NMR, and the dibenzoquinone (2) was further determined by single-crystal X-ray diffraction.


2019 ◽  
Vol 234 (9) ◽  
pp. 613-621
Author(s):  
Marc André Althoff ◽  
Jörn Frederik Martens ◽  
Marco Reichel ◽  
Manfred Metzulat ◽  
Thomas Matthias Klapötke ◽  
...  

Abstract The molecular and single crystal structure of O,O-diethyl O-[2-(dimethylamino)ethyl] phosphorothioate oxalate, as determined by single crystal X-ray diffraction studies, is described for the first time; although this compound is well-known by industry and research from the mid-20th century. The known decomposition product of pure O,O-diethyl O-[2-(dimethylamino)ethyl] phosphorothioate could also be structurally characterized. Additionally, the compounds are characterized by recent analytical methods e.g. NMR. The findings of our study support the thesis that the isolated decomposition product must be a by-product of the thiono-thiolo rearrangement process of the title compound.


2007 ◽  
Vol 63 (6) ◽  
pp. 836-842 ◽  
Author(s):  
Sebastian Prinz ◽  
Karine M. Sparta ◽  
Georg Roth

The V4+ (spin ½) oxovanadates AV3O7 (A = Ca, Sr) were synthesized and studied by means of single-crystal X-ray diffraction. The room-temperature structures of both compounds are orthorhombic and their respective space groups are Pnma and Pmmn. The previously assumed structure of SrV3O7 has been revised and the temperature dependence of both crystal structures in the temperature ranges 297–100 K and 315–100 K, respectively, is discussed for the first time.


Author(s):  
Alexander M. Antipin ◽  
Natalia I. Sorokina ◽  
Olga A. Alekseeva ◽  
Alexandra N. Kuskova ◽  
Elena P. Kharitonova ◽  
...  

A single crystal of Nd5Mo3O16with lead partly substituting for neodymium, which has a fluorite-like structure, was studied by precision X-ray diffraction, high-resolution transmission microscopy and EDX microanalysis. The crystal structure is determined in the space group Pn\bar 3n. It was found that the Pb atoms substitute in part for Nd atoms in the structure and are located in the vicinity of Nd2 positions. Partial substitutions of Mo cations for Nd positions and of Nd for Mo positions in crystals of theLn5Mo3O16oxide family are corroborated by X-ray diffraction for the first time. The first experimental verification of the location of an additional oxygen ion in the voids abutting MoO4tetrahedra was obtained.


1978 ◽  
Vol 33 (3) ◽  
pp. 265-267 ◽  
Author(s):  
Bernhard Nuber ◽  
Johannes Weiss ◽  
Karl Wieghardt

Abstract cis-Dioxo-dipicolinato-vanadate(V), Crystal Structure, IR, Raman The crystal structure of Cs[V(O)2(dipic)]·H2O (dipic = pyridine-2,6-dicarboxylate) has been determined by single crystal x-ray diffraction analysis. The compound crystallizes in the monoclinic space group P21/a, with cell constants a =737.8(3), 6=1917.5(5), c = 792.9(3) pm, β= 94.87(6)°, and Z = 4. The geometry about vanadium is a distorted trigonal bipyramid containing a cis-dioxo moiety (∢ O-V-O 109.9(3)°, V=O bond lengths 161.0(6) and 161.5(6) pm). Vibrational absorptions νs(V - 0) and νas(V=O) were found at 956 and 947 cm-1 in the IR and Raman spectrum, resp.


2011 ◽  
Vol 170 ◽  
pp. 198-202 ◽  
Author(s):  
Junji Akimoto ◽  
Hiroshi Hayakawa ◽  
Norihito Kijima ◽  
Junji Awaka ◽  
Fuji Funabiki

Single crystals of Na0.44MnO2 (=Na4Mn9O18) have been synthesized by a flux method at 1173 K for the first time. The crystal structure of Na0.44MnO2 has been refined by single-crystal X-ray diffraction method. The framework structure consists of double and triple rutile-type chains of edge-sharing MnO6 octahedra and a single chain of edge-sharing MnO5. The Mn-O bond distance and bond valence analyses revealed the manganese valence Mn3+/Mn4+ ordering in the Na0.44MnO2 structure.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1620 ◽  
Author(s):  
Alexandr Sukhikh ◽  
Dmitry Bonegardt ◽  
Darya Klyamer ◽  
Pavel Krasnov ◽  
Tamara Basova

In this work, the tetra-, octa- and hexadecachloro-substituted copper phthalocyanines CuPcClx (where x can equal 4, 8 or 16) were investigated by the methods of vibrational (IR and Raman) spectroscopy and X-ray diffraction. The assignment of the most intense bands, both in IR and Raman spectra, was carried out on the basis of DFT calculations. The structure of a CuPcCl4 single crystal grown by sublimation in vacuum was refined for the first time. The effect of chloro-substitution on the structure of CuPcClx thin films deposited in a vacuum onto a glass substrate at 50 and 200 °C was studied. It was shown that CuPcCl4 formed polycrystalline films with the preferential orientation of the (100) crystallographic plane of crystallites parallel to the substrate surface when deposited on a substrate at 50 °C. Introduction of more Cl-substituents into the phthalocyanine macrocycle leads to the formation of amorphous films on the substrates at 50 °C. At the elevated substrate temperature, the growth of polycrystalline disordered films was observed for all three copper phthalocyanines.


2019 ◽  
Vol 5 (11) ◽  
pp. eaax7863 ◽  
Author(s):  
Xi Kang ◽  
Fengqing Xu ◽  
Xiao Wei ◽  
Shuxin Wang ◽  
Manzhou Zhu

The valence self-regulation of sulfur from the “−2” valence state in thiols to the “−1” valence state in hydroxylated thiolates has been accomplished using the Pt1Ag28 nanocluster as a platform—the first time that the “−1” valent sulfur has been detected as S−1. Two previously unknown nanoclusters, Pt1Ag28(SR)20 and Pt1Ag28(SR)18(HO-SR)2 (where SR represents 2-adamantanethiol), have been synthesized and characterized—in the latter nanocluster, the presence of hydroxyl induces the valence regulation of two special S atoms from “−2” (in SR) to “−1” valence state in the HO-S(Ag)R. Because of the contrasting nature of the capping ligands in these two nanoclusters [i.e., only SR in Pt1Ag28(SR)20 or both SR- and HO-SR- in Pt1Ag28(SR)18(HO-SR)2], they exhibit differing shell architectures, even though their cores (Pt1Ag12) are in the same icosahedral configuration. Single-crystal x-ray diffraction analysis revealed their 1:1 cocrystallization, and mass spectrometry verified the presence of hydroxyls on Pt1Ag28(SR)18(HO-SR)2.


Sign in / Sign up

Export Citation Format

Share Document