scholarly journals Solvating Alkylamine Hofmann Elimination in Zeolites Through Cooperative Adsorption

Author(s):  
Han Chen ◽  
Omar Abdelrahman

<p>A kinetic investigation of the vapor phase Hofmann elimination of tert-butylamine over H-ZSM-5 reveals a carbocation mediated E1-like mechanism, where isobutene and ammonia are exclusively produced over Brønsted acid sites. Hofmann elimination kinetics are found to be insensitive to Al content or siting, varying only with alkylamine carbocation stability (r<sub>tertiary</sub> > r<sub>secondary</sub> > r<sub>primary</sub>). Under conditions of complete tert-butylamine surface coverage, experimentally measurable apparent kinetics are directly equivalent to the intrinsic kinetics of the rate determining unimolecular surface elimination. The direct measurement of elementary step kinetics served as a water-free reactive probe, providing a direct measurement of the impact of water on solid Brønsted acid catalyzed chemistries at a microscopic level. Over a range of temperatures (453‒513 K) and tert-butylamine partial pressures (6.8×10<sup>-2</sup>‒6.8 kPa), water reversibly inhibits the rate of Hofmann elimination. Despite expected changes in aluminosilicate hydrophobicity, the water-induced inhibition is found to be insensitive to Al content, demonstrated to be due to one water molecule per Brønsted acid site. Regardless of the significant reduction in the rate of Hofmann elimination, kinetic interrogations and operando spectroscopic measurements reveal that the coverage of TBA adsorbed on H-ZSM-5 is unaltered in the presence of water. Cooperative adsorption between the tert-butylammonium surface reactant and water adsorbed on a neighboring framework oxygen is proposed to be responsible for the observed rate inhibition, the surface dynamics of which is quantitatively captured through kinetic modeling of experimental rate measurements.</p>

2021 ◽  
Author(s):  
Han Chen ◽  
Omar Abdelrahman

<p>A kinetic investigation of the vapor phase Hofmann elimination of tert-butylamine over H-ZSM-5 reveals a carbocation mediated E1-like mechanism, where isobutene and ammonia are exclusively produced over Brønsted acid sites. Hofmann elimination kinetics are found to be insensitive to Al content or siting, varying only with alkylamine carbocation stability (r<sub>tertiary</sub> > r<sub>secondary</sub> > r<sub>primary</sub>). Under conditions of complete tert-butylamine surface coverage, experimentally measurable apparent kinetics are directly equivalent to the intrinsic kinetics of the rate determining unimolecular surface elimination. The direct measurement of elementary step kinetics served as a water-free reactive probe, providing a direct measurement of the impact of water on solid Brønsted acid catalyzed chemistries at a microscopic level. Over a range of temperatures (453‒513 K) and tert-butylamine partial pressures (6.8×10<sup>-2</sup>‒6.8 kPa), water reversibly inhibits the rate of Hofmann elimination. Despite expected changes in aluminosilicate hydrophobicity, the water-induced inhibition is found to be insensitive to Al content, demonstrated to be due to one water molecule per Brønsted acid site. Regardless of the significant reduction in the rate of Hofmann elimination, kinetic interrogations and operando spectroscopic measurements reveal that the coverage of TBA adsorbed on H-ZSM-5 is unaltered in the presence of water. Cooperative adsorption between the tert-butylammonium surface reactant and water adsorbed on a neighboring framework oxygen is proposed to be responsible for the observed rate inhibition, the surface dynamics of which is quantitatively captured through kinetic modeling of experimental rate measurements.</p>


2017 ◽  
Vol 54 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Xu Li ◽  
Lan Wu ◽  
Qiong Tang ◽  
Jinxiang Dong

Author(s):  
Mizzanoor Rahaman ◽  
M. Shahnawaz Ali ◽  
Khorshada Jahan ◽  
Damon Hinz ◽  
Jawad Bin Belayet ◽  
...  

2021 ◽  
Author(s):  
Sergio Rojas-Buzo ◽  
Benjamin Bohigues ◽  
Christian W. Lopes ◽  
Débora M. Meira ◽  
Mercedes Boronat ◽  
...  

The Brønsted/Lewis acid properties of Hf-MOF-808 can be tuned by simply controlling the solvent employed in its synthesis, with direct catalytic implications on the activity and selectivity of organic reactions sensitive to the active site nature.


2021 ◽  
pp. 152751
Author(s):  
Wenming Chen ◽  
Guifang Chen ◽  
Biao Wang ◽  
Wei Wang ◽  
Wei Huang ◽  
...  

ACS Omega ◽  
2021 ◽  
Vol 6 (16) ◽  
pp. 10840-10858
Author(s):  
Tushar M. Khopade ◽  
Kalyani Ajayan ◽  
Swapnil S. Joshi ◽  
Amy L. Lane ◽  
Rajesh Viswanathan

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2015
Author(s):  
Łukasz Kuterasiński ◽  
Małgorzata Smoliło-Utrata ◽  
Joanna Kaim ◽  
Wojciech Rojek ◽  
Jerzy Podobiński ◽  
...  

The aim of the present paper is to study the speciation and the role of different active site types (copper species and Brønsted acid sites) in the direct synthesis of furan from furfural catalyzed by copper-exchanged FAU31 zeolite. Four series of samples were prepared by using different conditions of post-synthesis treatment, which exhibit none, one or two types of active sites. The catalysts were characterized by XRD, low-temperature sorption of nitrogen, SEM, H2-TPR, NMR and by means of IR spectroscopy with ammonia and CO sorption as probe molecules to assess the types of active sites. All catalyst underwent catalytic tests. The performed experiments allowed to propose the relation between the kind of active centers (Cu or Brønsted acid sites) and the type of detected products (2-metylfuran and furan) obtained in the studied reaction. It was found that the production of 2-methylfuran (in trace amounts) is determined by the presence of the redox-type centers, while the protonic acid sites are mainly responsible for the furan production and catalytic activity in the whole temperature range. All studied catalysts revealed very high susceptibility to coking due to polymerization of furfural.


2021 ◽  
Vol 395 ◽  
pp. 210-226
Author(s):  
Philip M. Kester ◽  
Jerry T. Crum ◽  
Sichi Li ◽  
William F. Schneider ◽  
Rajamani Gounder

Sign in / Sign up

Export Citation Format

Share Document