Molecular Level Interpretation of Vibrational Spectra of Ordered Ice Phases

Author(s):  
Daniel R. Moberg ◽  
Peter J. Sharp ◽  
Francesco Paesani

<div> <div> <div> <p>We build on results from our previous investigation into ice Ih using a combination of classical many-body molecular dynamics (MB-MD) and normal mode (NM) calculations to obtain molecular level information on the spectroscopic signatures in the OH stretching region for all seven of the known ordered crystalline ice phases. The classical MB-MD spectra are shown to capture the important spectral features by comparing with experimental Raman spectra. This motivates the use of the classical simulations in understanding the spectral features of the various ordered ice phases in molecular terms. This is achieved through NM analysis to first demonstrate that the MB-MD spectra can be well recovered through the transition dipole moments and polarizability tensors calculated from each NM. From the normal mode calculations, measures of the amount of symmetric and antisymmetric stretching are calculated for each ice, as well as an approximation of how localized each mode is. These metrics aid in viewing the ice phases on a continuous spectrum determined by their density. As in ice Ih, it is found that most of the other ordered ice phases have highly delocalized modes and their spectral features cannot, in general, be described in terms of molecular normal modes. The lone exception is ice VIII, the densest crystalline ice phase. Despite being found only at high pressure, the symmetry index shows a clear separation of symmetric and antisymmetric stretching modes giving rise to two distinct features. </p> </div> </div> </div>

2018 ◽  
Author(s):  
Daniel R. Moberg ◽  
Peter J. Sharp ◽  
Francesco Paesani

<div> <div> <div> <p>We build on results from our previous investigation into ice Ih using a combination of classical many-body molecular dynamics (MB-MD) and normal mode (NM) calculations to obtain molecular level information on the spectroscopic signatures in the OH stretching region for all seven of the known ordered crystalline ice phases. The classical MB-MD spectra are shown to capture the important spectral features by comparing with experimental Raman spectra. This motivates the use of the classical simulations in understanding the spectral features of the various ordered ice phases in molecular terms. This is achieved through NM analysis to first demonstrate that the MB-MD spectra can be well recovered through the transition dipole moments and polarizability tensors calculated from each NM. From the normal mode calculations, measures of the amount of symmetric and antisymmetric stretching are calculated for each ice, as well as an approximation of how localized each mode is. These metrics aid in viewing the ice phases on a continuous spectrum determined by their density. As in ice Ih, it is found that most of the other ordered ice phases have highly delocalized modes and their spectral features cannot, in general, be described in terms of molecular normal modes. The lone exception is ice VIII, the densest crystalline ice phase. Despite being found only at high pressure, the symmetry index shows a clear separation of symmetric and antisymmetric stretching modes giving rise to two distinct features. </p> </div> </div> </div>


1998 ◽  
Vol 06 (04) ◽  
pp. 435-452 ◽  
Author(s):  
Robert P. Gilbert ◽  
Zhongyan Lin ◽  
Klaus Hackl

Normal-mode expansions for Green's functions are derived for ocean–bottom systems. The bottom is modeled by Kirchhoff and Reissner–Mindlin plate theories for elastic and poroelastic materials. The resulting eigenvalue problems for the modal parameters are investigated. Normal modes are calculated by Hankel transformation of the underlying equations. Finally, the relation to the inverse problem is outlined.


Author(s):  
S. Y. Chen ◽  
M. S. Ju ◽  
Y. G. Tsuei

Abstract A frequency-domain technique to extract the normal mode from the measurement data for highly coupled structures is developed. The relation between the complex frequency response functions and the normal frequency response functions is derived. An algorithm is developed to calculate the normal modes from the complex frequency response functions. In this algorithm, only the magnitude and phase data at the undamped natural frequencies are utilized to extract the normal mode shapes. In addition, the developed technique is independent of the damping types. It is only dependent on the model of analysis. Two experimental examples are employed to illustrate the applicability of the technique. The effects due to different measurement locations are addressed. The results indicate that this technique can successfully extract the normal modes from the noisy frequency response functions of a highly coupled incomplete system.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42897-42902
Author(s):  
Chan Hee Lee ◽  
Shin Hyung Choi ◽  
Sung Joon Oh ◽  
Jun Hyeon Lee ◽  
Jae Won Shim ◽  
...  

The linear D–A–D type of molecular structure of AcPYM and PxPYM enhances the horizontally oriented alignment and up to 87% of the horizontal transition dipole moments in the host matrix is realized.


Sign in / Sign up

Export Citation Format

Share Document