scholarly journals Intrinsic Flexibility of the EMT Zeolite Framework Under Pressure

2019 ◽  
Author(s):  
Antony Nearchou ◽  
Mero-Lee U. Cornelius ◽  
Jonathan M. Skelton ◽  
Zoe Jones ◽  
Andrew Cairns ◽  
...  

<p>The roles of organic additives in the assembly and crystallisation of zeolites is still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether as an additive, which has previously been shown to differentiate between the EMT and FAU zeolite frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility – agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a true geometric template. This was further studied with computational modelling, using first-principles comparative periodic DFT and lattice-dynamics calculations. It is shown that the lattice energy of FAU is more stable than EMT, however this is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy, being stabilised by free energy at finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free-energy of crystallisation to assemble the EMT framework as opposed to FAU. </p>

2019 ◽  
Author(s):  
Antony Nearchou ◽  
Mero-Lee U. Cornelius ◽  
Jonathan M. Skelton ◽  
Zoe Jones ◽  
Andrew Cairns ◽  
...  

<p>The roles of organic additives in the assembly and crystallisation of zeolites is still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether as an additive, which has previously been shown to differentiate between the EMT and FAU zeolite frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility – agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a true geometric template. This was further studied with computational modelling, using first-principles comparative periodic DFT and lattice-dynamics calculations. It is shown that the lattice energy of FAU is more stable than EMT, however this is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy, being stabilised by free energy at finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free-energy of crystallisation to assemble the EMT framework as opposed to FAU. </p>


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 641 ◽  
Author(s):  
Antony Nearchou ◽  
Mero-Lee Cornelius ◽  
Jonathan Skelton ◽  
Zöe Jones ◽  
Andrew Cairns ◽  
...  

The roles of organic additives in the assembly and crystallisation of zeolites are still not fully understood. This is important when attempting to prepare novel frameworks to produce new zeolites. We consider 18-crown-6 ether (18C6) as an additive, which has previously been shown to differentiate between the zeolite EMC-2 (EMT) and faujasite (FAU) frameworks. However, it is unclear whether this distinction is dictated by influences on the metastable free-energy landscape or geometric templating. Using high-pressure synchrotron X-ray diffraction, we have observed that the presence of 18C6 does not impact the EMT framework flexibility—agreeing with our previous geometric simulations and suggesting that 18C6 does not behave as a geometric template. This was further studied by computational modelling using solid-state density-functional theory and lattice dynamics calculations. It is shown that the lattice energy of FAU is lower than EMT, but is strongly impacted by the presence of solvent/guest molecules in the framework. Furthermore, the EMT topology possesses a greater vibrational entropy and is stabilised by free energy at a finite temperature. Overall, these findings demonstrate that the role of the 18C6 additive is to influence the free energy of crystallisation to assemble the EMT framework as opposed to FAU.


2019 ◽  
Vol 6 (7) ◽  
pp. 182158 ◽  
Author(s):  
Antony Nearchou ◽  
Mero-Lee U. Cornelius ◽  
Zöe L. Jones ◽  
I. E. Collings ◽  
Stephen A. Wells ◽  
...  

Previous work has shown a strong correlation between zeolite framework flexibility and the nature of structural symmetry and phase transitions. However, there is little experimental data regarding this relationship, in addition to how flexibility can be connected to the synthesis of these open-framework materials. This is of interest for the synthesis of novel zeolites, which require organic additives to permutate the resulting geometry and symmetry of the framework. Here, we have used high-pressure powder X-ray diffraction to study the three zeolites: Na-X, RHO and ZK-5, which can all be prepared using 18-crown-6 ether as an organic additive. We observe significant differences in how the occluded 18-crown-6 ether influences the framework flexibility—this being dependent on the geometry of the framework. We use these differences as an indicator to define the role of 18-crown-6 ether during zeolite crystallization. Furthermore, in conjunction with previous work, we predict that pressure-induced symmetry transitions are intrinsic to body-centred cubic zeolites. The high symmetry yields fewer degrees of freedom, meaning it is energetically favourable to lower the symmetry to facilitate further compression.


2018 ◽  
Author(s):  
Antony Nearchou ◽  
Mero-Lee Cornelius ◽  
Zoe Jones ◽  
Ines E. Collings ◽  
Stephen A. Wells ◽  
...  

<p>Previous work has shown a strong correlation between zeolite framework flexibility and the nature of structural symmetry and phase transitions. However, there is little experimental data regarding this relationship, in addition to how flexibility can be connected to the synthesis of these open framework materials. This is of interest for the synthesis of novel zeolites, which require organic additives to permutate the resulting geometry and symmetry of the framework. Here, we have used high pressure powder X-ray diffraction to study the three zeolites: Na-X, RHO and ZK-5, which can all be prepared using 18-crown-6 ether as an organic additive. We observe significant differences in how the occluded 18-crown-6 ether influences the framework flexibility – this being dependant on the geometry of the framework. We use these differences as an indicator to define the role of 18-crown-6 ether during zeolite crystallisation. Furthermore, in conjunction with previous work we predict that pressure-induced symmetry transitions are intrinsic to body-centred cubic zeolites. The high symmetry yields fewer degrees of freedom, meaning it is energetically favourable to lower the symmetry to facilitate further compression.</p>


2018 ◽  
Author(s):  
Antony Nearchou ◽  
Mero-Lee Cornelius ◽  
Zoe Jones ◽  
Ines E. Collings ◽  
Stephen A. Wells ◽  
...  

<p>Previous work has shown a strong correlation between zeolite framework flexibility and the nature of structural symmetry and phase transitions. However, there is little experimental data regarding this relationship, in addition to how flexibility can be connected to the synthesis of these open framework materials. This is of interest for the synthesis of novel zeolites, which require organic additives to permutate the resulting geometry and symmetry of the framework. Here, we have used high pressure powder X-ray diffraction to study the three zeolites: Na-X, RHO and ZK-5, which can all be prepared using 18-crown-6 ether as an organic additive. We observe significant differences in how the occluded 18-crown-6 ether influences the framework flexibility – this being dependant on the geometry of the framework. We use these differences as an indicator to define the role of 18-crown-6 ether during zeolite crystallisation. Furthermore, in conjunction with previous work we predict that pressure-induced symmetry transitions are intrinsic to body-centred cubic zeolites. The high symmetry yields fewer degrees of freedom, meaning it is energetically favourable to lower the symmetry to facilitate further compression.</p>


Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 242 ◽  
Author(s):  
Dmitry E. Arkhipov ◽  
Alexander V. Lyubeshkin ◽  
Alexander D. Volodin ◽  
Alexander A. Korlyukov

The peculiarities of interatomic interactions formed by fluorine atoms were studied in four tosylate derivatives p-CH3C6H4OSO2CH2CF2CF3 and p-CH3C6H4OSO2CH2(CF2)nCHF2 (n = 1, 5, 7) using X-ray diffraction and quantum chemical calculations. Compounds p-CH3C6H4OSO2CH2(CF2)nCHF2 (n = 1, 5) were crystallized in several polymorph modifications. Analysis of intermolecular bonding was carried out using QTAIM approach and energy partitioning. All compounds are characterized by crystal packing of similar type and the contribution of intermolecular interactions formed by fluorine atoms to lattice energy is raised along with the increase of their amount. The energy of intra- and intermolecular F…F interactions is varied in range 0.5–13.0 kJ/mol. Total contribution of F…F interactions to lattice energy does not exceed 40%. Crystal structures of studied compounds are stabilized mainly by C-H…O and C-H…F weak hydrogen bonds. The analysis of intermolecular interactions and lattice energies in polymorphs of p-CH3C6H4OSO2CH2(CF2)nCHF2 (n = 1, 5) has shown that most stabilized are characterized by the least contribution of F…F interactions.


2004 ◽  
Vol 69 (3) ◽  
pp. 179-186 ◽  
Author(s):  
Nevenka Rajic ◽  
Djordje Stojakovic ◽  
Darko Hanzel ◽  
Venceslav Kaucic

1,3-Diaminopropane (DAP) was used as a structure-directing agent for the hydrothermal synthesis of an organically templated iron phosphate. During crystallization at 180 ?C, iron phosphate (FePO-DAP) with a layered structure was formed after one day. Longer crystallization yielded a mixture of FePO-DAP and leucophosphite, raising the question whether a transformation of FePO-DAP to leucophosphite occurs, or whether DAP decomposes under hydrothermal conditions resulting in leucophosphite formation. Lattice energy and free energy calculations strongly support the supposition that a decomposition of DAP occurs prior to the formation of leucophosphite.


2020 ◽  
Author(s):  
Zhaoxi Sun

Host-guest binding remains a major challenge in modern computational modelling. The newest 7<sup>th</sup> statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and predict the binding affinities in all three host-guest binding cases of the 6<sup>th</sup> SAMPL challenge. In this work, we employed the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The predicted binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations.


1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


Sign in / Sign up

Export Citation Format

Share Document