scholarly journals Molecular Structures Polymorphism the Role of F…F Interactions in Crystal Packing of Fluorinated Tosylates

Crystals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 242 ◽  
Author(s):  
Dmitry E. Arkhipov ◽  
Alexander V. Lyubeshkin ◽  
Alexander D. Volodin ◽  
Alexander A. Korlyukov

The peculiarities of interatomic interactions formed by fluorine atoms were studied in four tosylate derivatives p-CH3C6H4OSO2CH2CF2CF3 and p-CH3C6H4OSO2CH2(CF2)nCHF2 (n = 1, 5, 7) using X-ray diffraction and quantum chemical calculations. Compounds p-CH3C6H4OSO2CH2(CF2)nCHF2 (n = 1, 5) were crystallized in several polymorph modifications. Analysis of intermolecular bonding was carried out using QTAIM approach and energy partitioning. All compounds are characterized by crystal packing of similar type and the contribution of intermolecular interactions formed by fluorine atoms to lattice energy is raised along with the increase of their amount. The energy of intra- and intermolecular F…F interactions is varied in range 0.5–13.0 kJ/mol. Total contribution of F…F interactions to lattice energy does not exceed 40%. Crystal structures of studied compounds are stabilized mainly by C-H…O and C-H…F weak hydrogen bonds. The analysis of intermolecular interactions and lattice energies in polymorphs of p-CH3C6H4OSO2CH2(CF2)nCHF2 (n = 1, 5) has shown that most stabilized are characterized by the least contribution of F…F interactions.

Author(s):  
M. Rajasekar ◽  
K. Muthu ◽  
A. Aditya Prasad ◽  
R. Agilandeshwari ◽  
SP Meenakshisundaram

Single crystals of molybdenum-incorporated tris(thiourea)zinc(II) sulfate (MoZTS) are grown by the slow evaporation solution growth technique. Crystal composition as determined by single-crystal X-ray diffraction analysis reveals that it belongs to the orthorhombic system with space groupPca21and cell parametersa= 11.153 (2),b= 7.7691 (14),c= 15.408 (3) Å,V= 1335.14 (4) Å3andZ= 4. The surface morphological changes are studied by scanning electron microscopy. The vibrational patterns in FT–IR are used to identify the functional group and TGA/DTA (thermogravimetric analysis/differential thermal analysis) indicates the stability of the material. The structure and the crystallinity of the material were confirmed by powder X-ray diffraction analysis and the simulated X-ray diffraction (XRD) closely matches the experimental one with varied intensity patterns. The band gap energy is estimated using diffuse reflectance data by the application of the Kubelka–Munk algorithm. The relative second harmonic generation (SHG) efficiency measurements reveal that MoZTS has an efficiency comparable to that of tris(thiourea)zinc(II) sulfate (ZTS). Hirshfeld surfaces were derived using single-crystal X-ray diffraction data. Investigation of the intermolecular interactions and crystal packingviaHirshfeld surface analysis reveal that the close contacts are associated with strong interactions. Intermolecular interactions as revealed by the fingerprint plot and close packing could be the possible reasons for facile charge transfer leading to SHG activity.


Author(s):  
Piyush Panini ◽  
K. N. Venugopala ◽  
Bharti Odhav ◽  
Deepak Chopra

A new polymorph belonging to the tetrahydropyrimidinium class of compounds, namely 6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-2-(3-(trifluoromethylthio)phenylamino)-3,6-dihydropyrimidin-1-ium chloride, and a hydrate of 2-(3-bromophenylamino)-6-(4-chlorophenyl)-5-(methoxycarbonyl)-4-methyl-3,6-dihydropyrimidin-1-ium chloride, have been isolated and characterized using single-crystal X-ray diffraction (XRD). A detailed comprehensive analysis of the crystal packing in terms of the associated intermolecular interactions and a quantification of their interaction energies have been performed for both forms of the two different organic salts (AandB) using X-ray crystallography and computational methods such as density functional theory (DFT) quantum mechanical calculations, PIXEL lattice-energy calculations (with decomposition of total lattice energy into the Coulombic, polarization, dispersion and repulsion contribution), the calculation of the Madelung constant (the EUGEN method), Hirshfeld and two-dimensional fingerprint plots. The presence of ionic [N—H]+...Cl−and [C—H]+...Cl−hydrogen bonds mainly stabilizes the crystal packing in both formsAandB, while in the case ofB·H2O [N—H]+...Owaterand Owater—H...Cl−hydrogen bonds along with [N—H]+...Cl−and [C—H]+...Cl−provide stability to the crystal packing. The lattice-energy calculations from both PIXEL and EUGEN methods revealed that in the case ofA, form (I) (monoclinic) is more stable whereas forBit is the anhydrous form that is more stable. The analysis of the `Madelung mode' of crystal packing of two forms ofAandBand its hydrates suggest that differences exist in the position of the charged ions/atoms in the organic solid state. TheR/E(distance–energy) plots for all the crystal structures show that the molecular pairs in their crystal packing are connected with either highly stabilizing (due to the presence of organicR+and Cl−) or highly destabilizing Coulombic contacts. The difference in crystal packing and associated intermolecular interactions between polymorphs (in the case ofA) or the hydrates (in the case ofB) have been clearly elucidated by the analysis of Hirshfeld surfaces and two-dimensional fingerprint plots. The relative contributions of the various interactions to the Hirshfeld surface for the cationic (dihydropyrimidinium) part and anionic (chloride ion) part for the two forms ofAandBand its hydrate were observed to be different.


2021 ◽  
Vol 77 (1) ◽  
pp. 11-19
Author(s):  
Damian Rosiak ◽  
Andrzej Okuniewski ◽  
Jarosław Chojnacki

By the reaction of benzoyl chloride, potassium isothiocyanate and the appropriate halogenoaniline, i.e. 2/3/4-(bromo/iodo)aniline, we have obtained five new 1-benzoyl-3-(halogenophenyl)thioureas, namely, 1-benzoyl-3-(2-bromophenyl)thiourea and 1-benzoyl-3-(3-bromophenyl)thiourea, C14H11BrN2OS, and 1-benzoyl-3-(2-iodophenyl)thiourea, 1-benzoyl-3-(3-iodophenyl)thiourea and 1-benzoyl-3-(4-iodophenyl)thiourea, C14H11IN2OS. Structural and conformational features of the compounds have been analyzed using X-ray diffraction and theoretical calculations. The novel compounds were characterized by solid-state IR and 1H/13C NMR spectroscopy. The conformations and intermolecular interactions, such as hydrogen bonds, π–π and S(6)...π stacking, and X...O (X = I or Br), I...S and I...π, have been examined and rationalized, together with four analogous compounds described previously in the literature. The set of nine compounds was chosen to examine how a change of the halogen atom and its position on the phenyl ring affects the molecular and crystal structures.


2018 ◽  
Vol 37 (1) ◽  
pp. 61 ◽  
Author(s):  
Nilgun Sen

A 1:1 co-crystal of trinitrotoluene (TNT) and 2,3-diaminotoluene was prepared by solvent evapo- ration, and the structure of the co-crystal was determined by single-crystal and powder X-ray diffraction. The results indicate that the main mechanism of co-crystallization originates from the intermolecular hy- drogen bonding (amino-nitro) and π-π stacking. We also examined the Hirshfeld surfaces and associated fingerprint plots of the co-crystal and reveal that the structures are stabilized by H…H, O–H, O…O and C…C (π-π) intermolecular interactions. We analyzed the crystal packing and show its influence upon im- pact sensitivity. The results highlight that co-crystallization is an effective way to modify the sensitivity, oxygen balance and density of explosives. 


Author(s):  
Anna Moliterni ◽  
Davide Altamura ◽  
Rocco Lassandro ◽  
Vincent Olieric ◽  
Gianmarco Ferri ◽  
...  

Anthracene derivative compounds are currently investigated because of their unique physical properties (e.g. bright luminescence and emission tunability), which make them ideal candidates for advanced optoelectronic devices. Intermolecular interactions are the basis of the tunability of the optical and electronic properties of these compounds, whose prediction and exploitation benefit from knowledge of the crystal structure and the packing architecture. Polymorphism can occur due to the weak intermolecular interactions, requiring detailed structural analysis to clarify the origin of observed material property modifications. Here, two silylethyne-substituted anthracene compounds are characterized by single-crystal synchrotron X-ray diffraction, identifying a new polymorph in the process. Additionally, laser confocal microscopy and fluorescence lifetime imaging microscopy confirm the results obtained by the X-ray diffraction characterization, i.e. shifting the substituents towards the external benzene rings of the anthracene unit favours π–π interactions, impacting on both the morphology and the microscopic optical properties of the crystals. The compounds with more isolated anthracene units feature shorter lifetime and emission spectra, more similar to those of isolated molecules. The crystallographic study, supported by the optical investigation, sheds light on the influence of non-covalent interactions on the crystal packing and luminescence properties of anthracene derivatives, providing a further step towards their efficient use as building blocks in active components of light sources and photonic networks.


2007 ◽  
Vol 63 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Maciej Bujak ◽  
Kamil Dziubek ◽  
Andrzej Katrusiak

Isomers 1,2-dichlorobenzene (o-DCB) and 1,3-dichlorobenzene (m-DCB) were high-pressure frozen in-situ in a Merrill–Bassett diamond–anvil cell and their structures determined at room temperature and at 0.18 (5) GPa for o-DCB, and 0.17 (5) GPa for m-DCB by single-crystal X-ray diffraction. The patterns of halogen...halogen intermolecular interactions in these structures can be considered to be the main cohesive forces responsible for the molecular arrangements in these crystals. The molecular packing of dichlorobenzene isomers, including three polymorphs of 1,4-dichlorobenzene (p-DCB), have been compared and relations between their molecular symmetry, packing arrangements, intermolecular interactions and melting points discussed. The topology of the crystal packing in dichlorobenzene isomers results from the interplay of the molecular shape, steric hindrances and intermolecular interactions. The non-planar arrangement of the dichlorobenzene molecules in the crystal structures can be justified by the distributions of the electrostatic potential on molecular surfaces, which determines electrostatic intermolecular interactions.


Author(s):  
Pradip Kumar Mondal ◽  
Rahul Shukla ◽  
Subha Biswas ◽  
Deepak Chopra

A total of 23 benzamides are obtained through a simple reaction between chloro-/bromo-/iodoaniline and trifluoromethylbenzoyl chloride and characterized using single-crystal X-ray diffraction. Crystal structures of three series of benzamides based on N-chlorophenyl–trifluoromethyl–benzamide (nine compounds), N-bromophenyl–trifluoromethyl–benzamide (six compounds), and N-iodophenyl–trifluoromethyl–benzamide (eight compounds) are prepared to analyse the halogen-mediated noncovalent interactions. The influences of Cl/Br/I and trifluoromethyl substituents on the respective interactions are examined in the presence of a strong N—H...O hydrogen bond. This exercise has resulted in the documentation of frequently occurring supramolecular synthons involving halogen atoms in the crystal packing of benzamide molecules in the solid state. In the present study, a detailed quantitative evaluation has been performed on the nature, energetics, electrostatic contributions, and topological properties of short and directional intermolecular interactions derived from the electron density on halogenated benzamides in the solid state. Besides these, the occurrence of three-, two- and one-dimensional isostructurality in halogen (Cl or Br or I) substituted benzamide analogues is also investigated. A `region of co-existence' involving halogen-based intermolecular interactions in the vicinity of the sum of the van der Waals radii has been identified. Thus, the nature of the halogen (effective size), type of interaction and the packing characteristics via presence of additional interactions establish the subtle, yet important, role of cooperativity in intermolecular interactions in crystal packing.


2018 ◽  
Vol 74 (7) ◽  
pp. 782-788 ◽  
Author(s):  
Ewa Żesławska ◽  
Wojciech Nitek ◽  
Henryk Marona ◽  
Agnieszka Gunia-Krzyżak

A number of cinnamamide derivatives possess anticonvulsant activity due to the presence of a number of important pharmacophore elements in their structures. In order to study the correlations between anticonvulsant activity and molecular structure, the crystal structures of three new cinnamamide derivatives with proven anticonvulsant activity were determined by X-ray diffraction, namely (R,S)-(2E)-N-(2-hydroxybutyl)-3-phenylprop-2-enamide–water (3/1), C13H17NO2·0.33H2O, (1), (2E)-N-(1-hydroxy-2-methylpropan-2-yl)-3-phenylprop-2-enamide, C13H17NO2, (2), and (R,S)-(2E)-N-(1-hydroxy-3-methyl-butan-2-yl)-3-phenylprop-2-enamide, C14H19NO2, (3). Compound (1) crystallizes in the space group P\overline{1} with three molecules in the asymmetric unit, whereas compounds (2) and (3) crystallize in the space group P21/c with one and two molecules, respectively, in their asymmetric units. The carbonyl group of (2) is engaged in an intramolecular hydrogen bond with the hydroxy group. This type of interaction is observed for the first time in these kinds of derivatives. A disorder of the substituent at the N atom occurs in the crystal structures of (2) and (3). The crystal packing of all three structures is dominated by a network of O—H...O and N—H...O hydrogen bonds, and leads to the formation of chains and/or rings. Furthermore, the crystal structures are stabilized by numerous C—H...O contacts. We analyzed the molecular structures and intermolecular interactions in order to propose a pharmacophore model for cinnamamide derivatives.


2020 ◽  
Vol 5 (1-2) ◽  
pp. 53-62
Author(s):  
Gopal Sharma ◽  
Rajni Kant

The benzimidazole moiety found in a large number of biologically important drugs has not been completely realized as yet in respect of its strength and directionality of its molecular interactions. To understand the role played by the intermolecular interactions in the benzimidazole derivatives, lattice energy of a series of five important molecules has been computed and results accrued thereof have been discussed. Analysis of molecular packing based on the intermolecular interaction energies suggests existence of different molecular pairs that play an important role in the stabilization of the crystal structures. Interaction energy analysis of such motifs reveals that intermolecular interactions of the type N-H…N and C-H…N happen to be the major contributors to the stabilization of molecular packing in the unit cell. N-H…π and C-H…π type edge-to-face stacking interactions also contribute significantly to the stabilization of crystal packing. The pairs of N-H…N intermolecular hydrogen bonds link the molecules into centrosymmetric dimers making a contribution of -14 to -18.52 kcal/mol towards stabilization, whereas C-H…N bonds link the molecules into dimers in the energy range of -2 to -5 kcal/mol. Additionally, the role of π…π interactions has also been investigated in molecular stabilization.


Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 159
Author(s):  
Vladimír Hejtmánek ◽  
Martin Dračínský ◽  
Jan Sýkora

A general procedure of crystal packing reconstruction using a certain number of intermolecular interactions is introduced and demonstrated on the crystal structure of l-histidine·HCl·H2O. Geometric restrictions based on intermolecular interactions are used for formation of a molecular pair as a basic repetitive motif of the crystal packing. The geometric restrictions were applied gradually within a supervised procedure, narrowing the scope of possible arrangement of two adjacent molecules. Subsequently, a pair of histidine molecules was used for construction of a molecular chain. The chain formed contained translation information on histidine molecules in one dimension, which coincided with one of the cell parameters. Furthermore, the periodicity in the second and third dimensions can be accomplished by chain assembly into sheets (2D), and sheets can be arranged into the final 3D structure. For this purpose, the rest of the available intermolecular interactions could be used to control the mutual assembly of molecular chains and sheets. Complete molecular packing would enable derivation of standard crystallographic parameters that can be used for verification of the structural model obtained. However, the procedure described for construction of the whole 3D structure from molecular chains was not attempted, and is only briefly outlined here. The procedure described can be employed especially when standard crystallographic parameters are not available and traditional methods based on X-ray diffraction fail.


Sign in / Sign up

Export Citation Format

Share Document