Role of the Structure and Electronic Properties of Fe2O3-MoO3 Catalyst on the Dehydration of Isopropyl Alcohol

1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.

1996 ◽  
Vol 61 (8) ◽  
pp. 1131-1140 ◽  
Author(s):  
Abd El-Aziz Ahmed Said

Vanadium oxide catalysts doped or mixed with 1-50 mole % Fe3+ ions were prepared. The structure of the original samples and those calcined from 200 up to 500 °C were characterized by TG, DTA, IR and X-ray diffraction. The SBET values and texture of the solid catalysts were investigated. The catalytic dehydration-dehydrogenation of isopropanol was carried out at 200 °C using a flow system. The results obtained showed an observable decrease in the activity of V2O5 on the addition of Fe3+ ions. Moreover, Fe2V4O13 is the more active and selective catalyst than FeVO4 spinels. The results were correlated with the active sites created on the catalyst surface.


1994 ◽  
Vol 59 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Amin Anwar ◽  
Ali Abdel-Ghaffar ◽  
Sameh Aboul-Fotouh ◽  
Ebeid Fikry

Different amounts of molybdo- and tungstophosphoric acids were supported on α-Al2O3 to get information about their surface and catalytic properties. The surface study revealed that surface area, total pore volume and the mean pore radius decreased as the acid content increased. X-Ray diffraction analysis showed that there is no interaction between the acid and α-Al2O3. Using a continuous flow system, methanol transformation was carried out under atmospheric pressure. Some experiments were made to determine the nature of active centers and reaction mechanism.


2021 ◽  
Vol 19 (4) ◽  
pp. 283-294
Author(s):  
Basma A.A. Balboul ◽  
A.K. Nohman ◽  
Randa F. Abd El-baki ◽  
Moutera S. Elshemery

Holmia supported γ-alumina nanocatalyst was prepared by impregnation of γ-alumina with aqueous solution of holmium acetate hydrate Ho(CH3COO)3.3.5 H2O. The physicochemical characteristics of the nanocatalyst calcined at 600°C were established by different techniques, using surface adsorption–desorption of N2 (SBET), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis diffuse reflectance spectroscopy (DRS). The recorded optical reflectance of the sample showed that the new self-assembled nanocatalyst is excellent as host material for advanced optical applications. Moreover, the catalyst showed enhanced catalytic activity toward Isopropyl alcohol decomposition.


2013 ◽  
Vol 743-744 ◽  
pp. 83-87
Author(s):  
B.B. Liang ◽  
Y. Li ◽  
L.L. Xu ◽  
L.J. Wang ◽  
W. Jiang

In this paper, Bi0.5Sb1.5Te3/graphene composite powders were prepared by hydrothermal synthesis method. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were used to characterize the morphology and structure of the composite powders. As a nanocomposite phase, graphene provided plenty of charge carriers and active sites for nucleation of Bi0.5Sb1.5Te3 grains. Bi0.5Sb1.5Te3 particles aggregated and attached to the surfaces of graphene randomly. In addition, it was found that the sizes of Bi0.5Sb1.5Te3 particles varied with different content of graphene. The formation mechanism of Bi0.5Sb1.5Te3/graphene composite powders was discussed.


Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2996 ◽  
Author(s):  
Reyhaneh Kaveh ◽  
Maryam Mokhtarifar ◽  
Mojtaba Bagherzadeh ◽  
Andrea Lucotti ◽  
Maria Vittoria Diamanti ◽  
...  

In this paper, we report the preparation of a new composite (TiO2/SiO2/γ-Fe2O3/rGO) with a high photocatalytic efficiency. The properties of the composite were examined by different analyses, including X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), photoluminescence (PL), UV-Visible light diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, vibrating-sample magnetometer (VSM), and nitrogen gas physisorption (BET) studies. The photocatalytic efficiency of the proposed composite was evaluated by the degradation of methylene blue under UV and visible light, and the results were compared with titanium dioxide (TiO2), where degradation increased from 30% to 84% and 4% to 66% under UV and visible light, respectively. The significant increase in photocatalytic activity may be explained by the higher adsorption of dye on the surface of the composite and the higher separation and transfer of charge carriers, which in turn promote active sites and photocatalytic efficiency.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


Nano Research ◽  
2021 ◽  
Author(s):  
Olga A. Krysiak ◽  
Simon Schumacher ◽  
Alan Savan ◽  
Wolfgang Schuhmann ◽  
Alfred Ludwig ◽  
...  

AbstractDespite outstanding accomplishments in catalyst discovery, finding new, more efficient, environmentally neutral, and noble metal-free catalysts remains challenging and unsolved. Recently, complex solid solutions consisting of at least five different elements and often named as high-entropy alloys have emerged as a new class of electrocatalysts for a variety of reactions. The multicomponent combinations of elements facilitate tuning of active sites and catalytic properties. Predicting optimal catalyst composition remains difficult, making testing of a very high number of them indispensable. We present the high-throughput screening of the electrochemical activity of thin film material libraries prepared by combinatorial co-sputtering of metals which are commonly used in catalysis (Pd, Cu, Ni) combined with metals which are not commonly used in catalysis (Ti, Hf, Zr). Introducing unusual elements in the search space allows discovery of catalytic activity for hitherto unknown compositions. Material libraries with very similar composition spreads can show different activities vs. composition trends for different reactions. In order to address the inherent challenge of the huge combinatorial material space and the inability to predict active electrocatalyst compositions, we developed a high-throughput process based on co-sputtered material libraries, and performed high-throughput characterization using energy dispersive X-ray spectroscopy (EDS), scanning transmission electron microscopy (SEM), X-ray diffraction (XRD) and conductivity measurements followed by electrochemical screening by means of a scanning droplet cell. The results show surprising material compositions with increased activity for the oxygen reduction reaction and the hydrogen evolution reaction. Such data are important input data for future data-driven materials prediction.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


1999 ◽  
Vol 55 (11) ◽  
pp. 1914-1916 ◽  
Author(s):  
F. A. V. Seixas ◽  
W. F. de Azevedo ◽  
M. F. Colombo

In this work, initial crystallographic studies of human haemoglobin (Hb) crystallized in isoionic and oxygen-free PEG solution are presented. Under these conditions, functional measurements of the O2-linked binding of water molecules and release of protons have evidenced that Hb assumes an unforeseen new allosteric conformation. The determination of the high-resolution structure of the crystal of human deoxy-Hb fully stripped of anions may provide a structural explanation for the role of anions in the allosteric properties of Hb and, particularly, for the influence of chloride on the Bohr effect, the mechanism by which Hb oxygen affinity is regulated by pH. X-ray diffraction data were collected to 1.87 Å resolution using a synchrotron-radiation source. Crystals belong to the space group P21212 and preliminary analysis revealed the presence of one tetramer in the asymmetric unit. The structure is currently being refined using maximum-likelihood protocols.


Sign in / Sign up

Export Citation Format

Share Document