scholarly journals Convergent Total Synthesis of (–)-Principinol D, a Rearranged Kaurane Diterpenoid

Author(s):  
Timothy Newhouse ◽  
Aneta Turlik ◽  
Yifeng Chen ◽  
Anthony Scruse

<div> <p>The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product was constructed via a convergent fragment coupling approach, wherein the central 7-membered ring was synthesized at a late stage. The <a>bicyclo</a>[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction, followed by a diastereoselective SmI<sub>2</sub>-mediated ketone reduction. The convergent strategy reported herein may be an entry point to a wide range of kaurane diterpenoids. </p> </div>

2019 ◽  
Author(s):  
Aneta Turlik ◽  
Yifeng Chen ◽  
Anthony Scruse ◽  
Timothy Newhouse

<div> <p>The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product was constructed via a convergent fragment coupling approach, wherein the central 7-membered ring was synthesized at a late stage. The <a>bicyclo</a>[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction, followed by a diastereoselective SmI<sub>2</sub>-mediated ketone reduction. The convergent strategy reported herein may be an entry point to a wide range of kaurane diterpenoids. </p> </div>


2019 ◽  
Author(s):  
Timothy Newhouse ◽  
Aneta Turlik ◽  
Yifeng Chen ◽  
Anthony Scruse

<div> <p>The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product is constructed via a convergent fragment coupling approach, wherein the central 7-membered ring is synthesized at a late stage. The bicyclo[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction. Strategic reductions include a diastereoselective SmI<sub>2</sub>-mediated ketone reduction with PhSH and a new protocol for selective ester reduction in the presence of ketones. The convergent strategy reported herein may be an entry point to the larger class of kaurane diterpenoids.</p> </div>


2019 ◽  
Author(s):  
Timothy Newhouse ◽  
Aneta Turlik ◽  
Yifeng Chen ◽  
Anthony Scruse

<div> <p>The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product is constructed via a convergent fragment coupling approach, wherein the central 7-membered ring is synthesized at a late stage. The bicyclo[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction. Strategic reductions include a diastereoselective SmI<sub>2</sub>-mediated ketone reduction with PhSH and a new protocol for selective ester reduction in the presence of ketones. The convergent strategy reported herein may be an entry point to the larger class of kaurane diterpenoids.</p> </div>


2019 ◽  
Author(s):  
Timothy Newhouse ◽  
Aneta Turlik ◽  
Yifeng Chen ◽  
Anthony Scruse

<div> <p>The total synthesis of principinol D, a rearranged kaurane diterpenoid, is reported. This grayanane natural product is constructed via a convergent fragment coupling approach, wherein the central 7-membered ring is synthesized at a late stage. The bicyclo[3.2.1]octane fragment is accessed by a Ni-catalyzed α-vinylation reaction. Strategic reductions include a diastereoselective SmI2-mediated ketone reduction with PhSH and a new protocol for selective ester reduction in the presence of ketones. The convergent strategy reported herein may be an entry point to the larger class of kaurane diterpenoids.</p> </div>


2021 ◽  
Author(s):  
Robert F. Lusi ◽  
Goh Sennari ◽  
Richmond Sarpong

<p>Natural product total synthesis inspires strategy development in chemical synthesis. In the 1960s, Corey and coworkers demonstrated a visionary preparation of the terpenoid longifolene, using “strategic bond analysis” to craft a synthesis route. This approach proposes that efficient synthesis routes to bridged, polycyclic, structures should be formulated to introduce the bulk of the target’s topological complexity at a late stage. In subsequent decades, similar strategies have proved general for the syntheses of a wide variety of bridged, polycyclic molecules. Here, we demonstrate that an orthogonal strategy, which utilizes a topologically complex bicyclo[2.2.1] starting material accessed through a scaffold rearrangement of (<i>S</i>)-carvone, leads to a remarkably short synthesis of the longifolene-related terpenoid longiborneol. We also employ a variety of late-stage C–H functionalization tactics in divergent syntheses of many longiborneol congeners. Our strategy should prove effective for the preparation of other topologically complex natural products that contain the bicyclo[2.2.1] framework.</p>


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3859
Author(s):  
Bin Bin Huang ◽  
Ya Yi Liu ◽  
Peng Fei Zhu ◽  
Yi Cheng Jiang ◽  
Ming-An Ouyang

The total synthesis of a natural product alkaloid fusaric acid (FA), which exhibits herbicide, fungicide, insecticide and even diverse notable pharmacological activities, was accomplished in four steps using commercially available materials. The synthesis, based on a unified and flexible strategy using 6-bromonicotinaldehyde as a common intermediate, is concise, convergent, practical and can be carried out on a two-gram scale. This approach could be readily applicable to the synthesis of its analogues. In addition, FA had a wide range of inhibitory activities against 14 plant pathogenic fungi in this study, which demonstrated that as a leading compound, and it has great potential to be further developed as an agricultural fungicide.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3223 ◽  
Author(s):  
Hong Kim ◽  
Heesun Yu ◽  
Hyoungsu Kim ◽  
Seok-Ho Kim ◽  
Dongjoo Lee

A mild and highly efficient metal-free oxidative α-cyanation of N-acyl/sulfonyl 1,2,3,4-tetrahydroisoquinolines (THIQs) has been accomplished at an ambient temperature via DDQ oxidation and subsequent trapping of N-acyl/sulfonyl iminium ions with (n-Bu)3SnCN. Employing readily removable N-acyl/sulfonyl groups as protecting groups rather than N-aryl ones enables a wide range of applications in natural product synthesis. The synthetic utility of the method was illustrated using a short and efficient formal total synthesis of (±)-calycotomine in three steps.


2021 ◽  
Author(s):  
Robert F. Lusi ◽  
Goh Sennari ◽  
Richmond Sarpong

<p>Natural product total synthesis inspires strategy development in chemical synthesis. In the 1960s, Corey and coworkers demonstrated a visionary preparation of the terpenoid longifolene, using “strategic bond analysis” to craft a synthesis route. This approach proposes that efficient synthesis routes to bridged, polycyclic, structures should be formulated to introduce the bulk of the target’s topological complexity at a late stage. In subsequent decades, similar strategies have proved general for the syntheses of a wide variety of bridged, polycyclic molecules. Here, we demonstrate that an orthogonal strategy, which utilizes a topologically complex bicyclo[2.2.1] starting material accessed through a scaffold rearrangement of (<i>S</i>)-carvone, leads to a remarkably short synthesis of the longifolene-related terpenoid longiborneol. We also employ a variety of late-stage C–H functionalization tactics in divergent syntheses of many longiborneol congeners. Our strategy should prove effective for the preparation of other topologically complex natural products that contain the bicyclo[2.2.1] framework.</p>


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 273
Author(s):  
Antonio Rosales Martínez ◽  
Ignacio Rodríguez-García ◽  
Josefa L. López-Martínez

The divergent total synthesis strategy can be successfully applied to the preparation of families of natural products using a common late-stage pluripotent intermediate. This approach is a powerful tool in organic synthesis as it offers opportunities for the efficient preparation of structurally related compounds. This article reviews the synthesis of the marine natural product aureol, as well as its use as a common intermediate in the divergent synthesis of other marine natural and non-natural tetracyclic meroterpenoids.


Planta Medica ◽  
2013 ◽  
Vol 79 (10) ◽  
Author(s):  
M Albadry ◽  
Y Zou ◽  
Y Takahashi ◽  
A Waters ◽  
M Hossein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document