In Vivo Biocompatibility and Immunogenicity of Metal-Phenolic Gelation

Author(s):  
Mattias Björnmalm ◽  
Lok Man Wong ◽  
Jonathan Wojciechowski ◽  
Jelle Penders ◽  
Conor Horgan ◽  
...  

In vivo forming hydrogels are of interest for diverse biomedical applications due to their ease-of-use and minimal invasiveness and therefore high translational potential. Supramolecular hydrogels that can be assembled using metal–phenolic coordination of naturally occurring polyphenols and group IV metal ions (e.g. Ti<sup>IV </sup>or Zr<sup>IV</sup>) provide a versatile and robust platform for engineering such materials. However, the in situ formation and in vivo response to this new class of materials has not yet been reported. Here, we demonstrate that metal–phenolic supramolecular gelation occurs successfully in vivo and we investigate the host response to the material over 14 weeks. The Ti<sup>IV</sup>–tannic acid materials form stable gels that are well-tolerated following subcutaneous injection. Histology reveals a mild foreign body reaction, and titanium biodistribution studies show low accumulation in distal tissues. Compared to poloxamer-based hydrogels (commonly used for in vivo gelation), Ti<sup>IV</sup>–tannic acid materials show substantially improved in vitro drug loading and release profile for the corticosteroid dexamethasone (from <1 day to >10 days). These results provide essential in vivo characterization for this new class of metal–phenolic hydrogels, and highlight their potential suitability for biomedical applications in areas such as drug delivery and regenerative medicine.<br>

2019 ◽  
Author(s):  
Mattias Björnmalm ◽  
Lok Man Wong ◽  
Jonathan Wojciechowski ◽  
Jelle Penders ◽  
Conor Horgan ◽  
...  

In vivo forming hydrogels are of interest for diverse biomedical applications due to their ease-of-use and minimal invasiveness and therefore high translational potential. Supramolecular hydrogels that can be assembled using metal–phenolic coordination of naturally occurring polyphenols and group IV metal ions (e.g. Ti<sup>IV </sup>or Zr<sup>IV</sup>) provide a versatile and robust platform for engineering such materials. However, the in situ formation and in vivo response to this new class of materials has not yet been reported. Here, we demonstrate that metal–phenolic supramolecular gelation occurs successfully in vivo and we investigate the host response to the material over 14 weeks. The Ti<sup>IV</sup>–tannic acid materials form stable gels that are well-tolerated following subcutaneous injection. Histology reveals a mild foreign body reaction, and titanium biodistribution studies show low accumulation in distal tissues. Compared to poloxamer-based hydrogels (commonly used for in vivo gelation), Ti<sup>IV</sup>–tannic acid materials show substantially improved in vitro drug loading and release profile for the corticosteroid dexamethasone (from <1 day to >10 days). These results provide essential in vivo characterization for this new class of metal–phenolic hydrogels, and highlight their potential suitability for biomedical applications in areas such as drug delivery and regenerative medicine.<br>


2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


2017 ◽  
Vol 80 ◽  
pp. 603-615 ◽  
Author(s):  
Anna Woźniak ◽  
Bartosz F. Grześkowiak ◽  
Nataliya Babayevska ◽  
Tomasz Zalewski ◽  
Monika Drobna ◽  
...  

2017 ◽  
Vol 75 ◽  
pp. 957-968 ◽  
Author(s):  
Maria R Katunar ◽  
Andrea Gomez Sanchez ◽  
Ana Santos Coquillat ◽  
Ana Civantos ◽  
Enrique Martinez Campos ◽  
...  

2006 ◽  
Vol 16 (4) ◽  
pp. 365-385 ◽  
Author(s):  
Sangamesh G. Kumbar ◽  
Subhabrata Bhattacharyya ◽  
Syam Prasad Nukavarapu ◽  
Yusuf M. Khan ◽  
Lakshmi S. Nair ◽  
...  

Author(s):  
Yasushi P. Kato ◽  
Michael G. Dunn ◽  
Frederick H. Silver ◽  
Arthur J. Wasserman

Collagenous biomaterials have been used for growing cells in vitro as well as for augmentation and replacement of hard and soft tissues. The substratum used for culturing cells is implicated in the modulation of phenotypic cellular expression, cellular orientation and adhesion. Collagen may have a strong influence on these cellular parameters when used as a substrate in vitro. Clinically, collagen has many applications to wound healing including, skin and bone substitution, tendon, ligament, and nerve replacement. In this report we demonstrate two uses of collagen. First as a fiber to support fibroblast growth in vitro, and second as a demineralized bone/collagen sponge for radial bone defect repair in vivo.For the in vitro study, collagen fibers were prepared as described previously. Primary rat tendon fibroblasts (1° RTF) were isolated and cultured for 5 days on 1 X 15 mm sterile cover slips. Six to seven collagen fibers, were glued parallel to each other onto a circular cover slip (D=18mm) and the 1 X 15mm cover slip populated with 1° RTF was placed at the center perpendicular to the collagen fibers. Fibroblast migration from the 1 x 15mm cover slip onto and along the collagen fibers was measured daily using a phase contrast microscope (Olympus CK-2) with a calibrated eyepiece. Migratory rates for fibroblasts were determined from 36 fibers over 4 days.


2019 ◽  
Vol 18 (9) ◽  
pp. 1289-1294 ◽  
Author(s):  
Kusum Vats ◽  
Rohit Sharma ◽  
Haladhar D. Sarma ◽  
Drishty Satpati ◽  
Ashutosh Dash

Aims: The urokinase Plasminogen Activator Receptors (uPAR) over-expressed on tumor cells and their invasive microenvironment are clinically significant molecular targets for cancer research. uPARexpressing cancerous lesions can be suitably identified and their progression can be monitored with radiolabeled uPAR targeted imaging probes. Hence this study aimed at preparing and evaluating two 68Ga-labeled AE105 peptide conjugates, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 as uPAR PET-probes. Method: The peptide conjugates, HBED-CC-AE105-NH2 and NODAGA-AE105-NH2 were manually synthesized by standard Fmoc solid phase strategy and subsequently radiolabeled with 68Ga eluted from a commercial 68Ge/68Ga generator. In vitro cell studies for the two radiotracers were performed with uPAR positive U87MG cells. Biodistribution studies were carried out in mouse xenografts with the subcutaneously induced U87MG tumor. Results: The two radiotracers, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 that were prepared in >95% radiochemical yield and >96% radiochemical purity, exhibited excellent in vitro stability. In vivo evaluation studies revealed higher uptake of 68Ga-HBED-CC-AE105 in U87MG tumor as compared to 68Ga-NODAGAAE105; however, increased lipophilicity of 68Ga-HBED-CC-AE105 resulted in slower clearance from blood and other non-target organs. The uPAR specificity of the two radiotracers was ascertained by significant (p<0.05) reduction in the tumor uptake with a co-injected blocking dose of unlabeled AE-105 peptide. Conclusion: Amongst the two radiotracers studied, the neutral 68Ga-NODAGA-AE105 with more hydrophilic chelator exhibited faster clearance from non-target organs. The conjugation of HBED-CC chelator (less hydrophilic) resulted in negatively charged 68Ga-HBED-CC-AE105 which was observed to have high retention in blood that decreased target to non-target ratios.


Carbon ◽  
2016 ◽  
Vol 103 ◽  
pp. 291-298 ◽  
Author(s):  
Valeria Ettorre ◽  
Patrizia De Marco ◽  
Susi Zara ◽  
Vittoria Perrotti ◽  
Antonio Scarano ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document