scholarly journals Integrating Allyl Electrophiles into Nickel-Catalyzed Conjunctive Cross-Coupling

Author(s):  
Van Tran ◽  
Zi-Qi Li ◽  
Timothy Gallagher ◽  
Joseph Derosa ◽  
Peng Liu ◽  
...  

Allylation and conjunctive cross-coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel-catalyzed conjunctive cross-coupling with a non-conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate azaheterocycle directing groups, that useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated in the facile reactivity of the β-γ alkene of the starting material, while the ε-ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of analogous method with alkyne substrates. Mechanistic studies reveal the importance of the weakly coordinating directing group in dissociating to allow binding of the allyl moiety to facilitate C(sp<sup>3</sup>)–C(sp<sup>3</sup>) reductive elimination.

2019 ◽  
Author(s):  
Van Tran ◽  
Zi-Qi Li ◽  
Timothy Gallagher ◽  
Joseph Derosa ◽  
Peng Liu ◽  
...  

Allylation and conjunctive cross-coupling represent two useful, yet largely distinct, reactivity paradigms in catalysis. The union of these two processes would offer exciting possibilities in organic synthesis but remains largely unknown. Herein, we report the use of allyl electrophiles in nickel-catalyzed conjunctive cross-coupling with a non-conjugated alkene and dimethylzinc. The transformation is enabled by weakly coordinating, monodentate azaheterocycle directing groups, that useful building blocks in synthesis, including saccharin, pyridones, pyrazoles, and triazoles. The reaction occurs under mild conditions and is compatible with a wide range of allyl electrophiles. High chemoselectivity through substrate directivity is demonstrated in the facile reactivity of the β-γ alkene of the starting material, while the ε-ζ alkene of the product is preserved. The generality of this approach is further illustrated through the development of analogous method with alkyne substrates. Mechanistic studies reveal the importance of the weakly coordinating directing group in dissociating to allow binding of the allyl moiety to facilitate C(sp<sup>3</sup>)–C(sp<sup>3</sup>) reductive elimination.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5532
Author(s):  
Laëtitia Chausset-Boissarie ◽  
Nicolas Cheval ◽  
Christian Rolando

Monofluoroalkenes are versatile fluorinated synthons in organic synthesis, medicinal chemistry and materials science. In light of the importance of alkyl-substituted monofluoroalkenes efficient synthesis of these moieties still represents a synthetic challenge. Herein, we described a mild and efficient methodology to obtain monofluoroalkenes through a stereospecific palladium-catalyzed alkylation of gem-bromofluoroalkenes with primary and strained secondary alkylboronic acids under mild conditions. This novel strategy gives access to a wide range of functionalized tri- and tetrasubstituted monofluoroalkenes in high yield, with good functional group tolerance, independently from the gem-bromofluoroalkenes geometry.


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2019 ◽  
Author(s):  
Andrew Romine ◽  
Kin Yang ◽  
Malkanthi Karunananda ◽  
Jason Chen ◽  
Keary Engle

A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to orchestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with traditional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck reactivity of internal alkenes providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this directing group, arene C–H olefination was also successfully developed. Reaction progress kinetic analysis provides insights into the role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this (BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination, allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products (+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S directed C–H olefination as the key step.


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shi Cao ◽  
Wei Hong ◽  
Ziqi Ye ◽  
Lei Gong

AbstractThe direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.


Author(s):  
Yang Yuan ◽  
Fu-Peng Wu ◽  
Anke Spannenberg ◽  
Xiao-Feng Wu

AbstractFunctionalized bisboryl compounds have recently emerged as a new class of synthetically useful building blocks in organic synthesis. Herein, we report an efficient strategy to synthesize β-geminal-diboryl ketones enabled by a Cu/Pd-catalyzed borocarbonylative trifunctionalization of readily available alkynes and allenes. This reaction promises to be a useful method for the synthesis of functionalized β-geminal-diboryl ketones with broad functional group tolerance. Mechanistic studies suggest that the reaction proceeds through borocarbonylation/hydroboration cascade of both alkynes and allenes.


2020 ◽  
Author(s):  
Rachel Szpara ◽  
Alexander Goyder ◽  
Michael Porter ◽  
Helen Hailes ◽  
Tom Sheppard

Pentose and hexose sugars are abundant constituents of waste biomass, making them sustainable, chiral building blocks for organic synthesis. The demand for chiral saturated heterocyclic rings from the pharmaceutical industry is increasing as they provide well-defined three-dimensional frameworks that show increased metabolic resistance. Through the formation of thioacetals, sugars may be manipulated in their straight-chain form and dehydrated selectively under basic conditions at C-2. This approach was applied to an array of sugars and extended to the production of useful chiral THFs via further selective dehydration reactions.


2020 ◽  
Author(s):  
Allan Watson ◽  
Nicola Bell ◽  
Chao Xu ◽  
James Fyfe ◽  
Julien Vantourout ◽  
...  

Metal-catalyzed C–N cross-coupling generally forms C–N bonds by reductive elimination from metal complexes bearing covalent C- and N-ligands. We have identified a Cu-mediated C–N cross-coupling that uses a dative N-ligand in the bond forming event, which, in contrast to conventional methods, generates reactive cationic products. Mechanistic studies suggest the process operates via transmetalation of an aryl organoboron to a Cu(II) complex bearing neutral N-ligands, such as nitriles or N-heterocycles. Subsequent generation of a putative Cu(III) complex enables the oxidative C–N coupling to take place, delivering nitrilium intermediates and pyridinium products. The reaction is general for a range of N(sp) and N(sp<sup>2</sup>) precursors and can be applied to drug synthesis and late-stage N-arylation, and the limitations in the methodology are mechanistically evidenced.


Sign in / Sign up

Export Citation Format

Share Document