scholarly journals Possibilities of electrocardiographic and decartographic parametersin the diagnosis of right ventricular overload in patients with pulmonary arterial hypertension

2015 ◽  
Vol 12 (2) ◽  
pp. 62-65
Author(s):  
T A Sakhnova ◽  
E V Blinova ◽  
M A Saidova ◽  
E S Yurasova ◽  
O A Arkhipova ◽  
...  

Aim: to study the possibilities of electrocardiographic and decartographic parameters to identify and assess the severity of overload of the right ventricle in pulmonary arterial hypertension (PAH) patients. Material and methods. Decartographic parameters of the activation duration and repolarization acceleration were studied in 120 patients with PAH and 120 healthy individuals compared to traditional ECG criteria of right ventricular hypertrophy. Moderate increase in systolic pulmonary artery pressure (SPAP) was determined as SPAP 30-50 mm Hg; severe as SPAP greater than 50 mm Hg. Results. The most informative decartographic indicators for the separation of the PAH group as a whole, and the subgroup with moderate increase in SPAP and normal group were the X and Z components of the repolarization acceleration vector and the index of activation duration, and for the separation of subgroups with moderate and severe increase in SPAP - Y component of the repolarization acceleration vector and index of activation duration. Decartographic parameters were more informative as compared with ECG criteria. Conclusion. In patients with PAH decartographic parameters can be useful for detecting the overload of the right ventricle and the assessment of its severity.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Eduardo Vázquez-Garza ◽  
Judith Bernal-Ramírez ◽  
Carlos Jerjes-Sánchez ◽  
Omar Lozano ◽  
Edgar Acuña-Morín ◽  
...  

Pulmonary arterial hypertension (PAH) is a life-threatening disease that is characterized by an increase in pulmonary vascular pressure, leading to ventricular failure and high morbidity and mortality. Resveratrol, a phenolic compound and a sirtuin 1 pathway activator, has known dietary benefits and is used as a treatment for anti-inflammatory and cardiovascular diseases. Its therapeutic effects have been published in the scientific literature; however, its benefits in PAH are yet to be precisely elucidated. Using a murine model of PAH induced by monocrotaline, the macroscopic and microscopic effects of a daily oral dose of resveratrol in rats with PAH were evaluated by determining its impact on the lungs and the right and left ventricular function. While most literature has focused on smooth muscle cell mechanisms and lung pathology, our results highlight the relevance of therapy-mediated improvement of right ventricle and isolated cardiomyocyte physiology in both ventricles. Although significant differences in the pulmonary architecture were not identified either micro- or macroscopically, the effects of resveratrol on right ventricular function and remodeling were observed to be beneficial. The values for the volume, diameter, and contractility of the right ventricular cardiomyocytes returned to those of the control group, suggesting that resveratrol has a protective effect against ventricular dysfunction and pathological remodeling changes in PAH. The effect of resveratrol in the right ventricle delayed the progression of findings associated with right heart failure and had a limited positive effect on the architecture of the lungs. The use of resveratrol could be considered a future potential adjunct therapy, especially when the challenges to making a diagnosis and the current therapy limitations for PAH are taken into consideration.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Suzuki ◽  
Y Tanaka ◽  
K Yamashita ◽  
A Shono ◽  
K Sumimoto ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background The haemodynamic effect of atrial septal defect (ASD) is a chronic volume overload of the right heart and pulmonary vasculature. Pulmonary overcirculation is generally compensated for by the right ventricular (RV) and pulmonary arterial (PA) reserve. However, in a subset of patients, prolonged pulmonary overcirculation insidiously induces obstructive pulmonary vasculopathy, which results in postoperative residual pulmonary arterial hypertension (PAH) after ASD closure. Postoperative PAH is a major concern because it is closely associated with poor outcomes and impaired quality of life. However, to date, no clinically robust predictors of postoperative residual PAH have been clearly identified. Purpose This study sought to assess the haemodynamic characteristics of ASD patients in terms of mechano-energetic parameters and to identify the predictors of postoperative residual PAH in these patients. Methods A total of 120 ASD patients (age: 58 ± 17 years) and 46 normal controls were recruited. As previously reported, the simplified RV contraction pressure index (sRVCPI) was calculated as an index of RV external work by multiplying the tricuspid annular plane systolic excursion (TAPSE) by the pressure gradient between the RV and right atrium. RV- PA coupling was evaluated using TAPSE divided by PA systolic pressure as an index of the RV length-force relationship. These parameters were measured both at baseline and 6 months after ASD closure. Results As expected, baseline sRVCPI was significantly greater in patients with ASD than in controls (775 ± 298 vs. 335 ± 180 mm Hg • mm, P < 0.01), which indicated significant "RV overwork". As a result, RV-PA coupling in ASD patients was significantly impaired compared to that in controls (0.9 ± 0.8 vs. 3.5 ± 1.7 mm/mm Hg, P < 0.01). All 120 ASD patients underwent transcatheter or surgical shunt closure; 15 of them had residual PAH after closure. After 6 months, RV-PA coupling index significantly improved in patients without residual PAH, from 0.96 ± 0.81 to 1.27 ± 1.24 mm/mm Hg (P = 0.02). Furthermore, RV load was markedly reduced, with sRVCPI falling from 691 ± 258 to 434 ± 217 mm Hg • mm, P < 0.01). However, in patients with residual PAH, RV-PA coupling index deteriorated from 0.64 ± 0.23 to 0.53 ± 0.12 mm/mm Hg (P < 0.01). As a result, RV overload was not significantly relieved (sRVCPI; from 971 ± 382 to 783 ± 166 mm Hg • mm, P = 0.22). In a multivariate analysis, baseline pulmonary vascular resistance (hazard ratio 1.009; P < 0.01) and preoperative sRVPCI (hazard ratio 1.003; P < 0.01) revealed to be independent predictors of residual PAH. Conclusion In terms of mechano-energetic function, preoperative "RV overwork" can be used as a robust predictor of an impaired RV-PA relationship in ASD patients. Moreover, periodic assessment of sRVPCI may contribute to the better management for patients with unrepaired ASD. Abstract Figure.


2018 ◽  
Vol 96 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Rafaela Siqueira ◽  
Rafael Colombo ◽  
Adriana Conzatti ◽  
Alexandre Luz de Castro ◽  
Cristina Campos Carraro ◽  
...  

The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg−1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.


2015 ◽  
Vol 46 (3) ◽  
pp. 832-842 ◽  
Author(s):  
Emmy Manders ◽  
Silvia Rain ◽  
Harm-Jan Bogaard ◽  
M. Louis Handoko ◽  
Ger J.M. Stienen ◽  
...  

Pulmonary arterial hypertension (PAH) is a fatal lung disease characterised by progressive remodelling of the small pulmonary vessels. The daily-life activities of patients with PAH are severely limited by exertional fatigue and dyspnoea. Typically, these symptoms have been explained by right heart failure. However, an increasing number of studies reveal that the impact of the PAH reaches further than the pulmonary circulation. Striated muscles other than the right ventricle are affected in PAH, such as the left ventricle, the diaphragm and peripheral skeletal muscles. Alterations in these striated muscles are associated with exercise intolerance and reduced quality of life. In this Back to Basics article on striated muscle function in PAH, we provide insight into the pathophysiological mechanisms causing muscle dysfunction in PAH and discuss potential new therapeutic strategies to restore muscle dysfunction.


ESC CardioMed ◽  
2018 ◽  
pp. 2493-2495
Author(s):  
Joanne A. Groeneveldt ◽  
Anton Vonk Noordegraaf ◽  
Frances S. de Man

In pulmonary arterial hypertension, afterload on the right ventricle is increased. Due to several adaptive mechanisms, the right ventricle is able to cope with a three- to fivefold increase in afterload. However, when adaptive mechanisms are no longer sufficient to compensate for this increase, the patient will develop right ventricular dysfunction and failure. This chapter provides an overview of mechanisms currently considered as having important roles in right ventricular adaptation and right ventricular failure.


2019 ◽  
Vol 9 (4) ◽  
pp. 204589401988977 ◽  
Author(s):  
Edda Spiekerkoetter ◽  
Elena A. Goncharova ◽  
Christophe Guignabert ◽  
Kurt Stenmark ◽  
Grazyna Kwapiszewska ◽  
...  

In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.


Sign in / Sign up

Export Citation Format

Share Document