scholarly journals PHOTOCATALYTIC REDUCTION OF Cr (VI) by PMo12/TiO2 ELECTROSPUN NANOFIBER COMPOSITES

Author(s):  
Hongfei Shi ◽  
Chuanbo Dai ◽  
Fang Liu ◽  
Weidong Wang ◽  
Huaqiao Tan
2016 ◽  
Vol 12 (2) ◽  
pp. 220-227 ◽  
Author(s):  
Mohammad R. Karim ◽  
Abdurahman Al-Ahmari ◽  
M.A. Dar ◽  
M.O. Aijaz ◽  
M.L. Mollah ◽  
...  

ChemCatChem ◽  
2019 ◽  
Vol 11 (14) ◽  
pp. 3307-3317
Author(s):  
Andreea L. Chibac ◽  
Violeta Melinte ◽  
Vlasta Brezová ◽  
Estelle Renard ◽  
Arnaud Brosseau ◽  
...  

2020 ◽  
Vol 59 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Yao Wang ◽  
Jianqing Feng ◽  
Lihua Jin ◽  
Chengshan Li

AbstractWe have grown Cu2O films by different routes including self-oxidation and metal-organic deposition (MOD). The reduction efficiency of Cu2O films on graphene oxide (GO) synthesized by modified Hummer’s method has been studied. Surface morphology and chemical state of as-prepared Cu2O film and GO sheets reduced at different conditions have also been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). Results show that self-oxidation Cu2O film is more effective on phtocatalytic reduction of GO than MOD-Cu2O film. Moreover, reduction effect of self-oxidation Cu2O film to GO is comparable to that of environmental-friendly reducing agent of vitamin C. The present results offer a potentially eco-friendly and low-cost approach for the manufacture of reduced graphene oxide (RGO) by photocatalytic reduction.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Hyun Il Ryu ◽  
Jeong Myeong Lee ◽  
Seong Hwan Bae ◽  
Jae Woo Lee ◽  
...  

AbstractElectrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.


Author(s):  
Xin Zhang ◽  
Fenyang Tian ◽  
Longyu Qiu ◽  
Manyi Gao ◽  
Weiwei Yang ◽  
...  

Inferior separation efficiency of the photo-induced carriers is still a major obstacle to the practical application of photocatalyst, whereas the suitable design of dual-heterojunction is expected to break through this...


Sign in / Sign up

Export Citation Format

Share Document