scholarly journals Concepts on statistical physics - fluctuations in equilibrium

2015 ◽  
Vol 4 (1) ◽  
pp. 1-27
Author(s):  
L´eon Brenig

This essay corresponds to the content of three lectures about statistical physics delivered to the audience of the 2014 section of the R. A. Salmeron School of Physics, at the UnB. Our starting point was very simple statistical models (lattice gas, spin-1/2 ferromagnet), used as illustrations of the competencies and methods in statistical physics. Thus we introduce the Gibbs ensembles, defining a connection with thermodynamics and discussing the role played by fluctuations and large numbers. We present phenomenological aspects of phase transitions and critical phenomena in simple fluids and in uniaxial ferromagnets, emphasizing the universal character of the critical exponents. We describe the phenomenological van der Waals and Curie-Weiss theories and the Landau expansion, which are present-day relevant methods, despite the fact that such theories give rise to critical exponents in disagreement with experiments. We present then the paradigmatic Ising model, which points us to a way to overcome the phenomenological results. A brief presentation of the scale phenomenological methods and the contemporaneous renormalization group are considered at the end of these lectures.

2004 ◽  
Vol 15 (09) ◽  
pp. 1321-1325
Author(s):  
LOTFI ZEKRI

Numerical investigation of critical exponents on a hypercubic lattice with Ld random sites with L up to 33 and d up to 7 showed that above the critical dimension the phase transitions in Ising model and percolation are not alike.


2020 ◽  
pp. 518-542
Author(s):  
Giuseppe Mussardo

Chapter 14 discusses how the identification of a class of universality is one of the central questions needing an answer for those in the field of statistical physics. This chapter discusses in detail the class of universality of several models, and provides examples that include the Ising model, the tricritical Ising model and its structure constants, the Yang–Lee model and the 3-state Potts model. This chapter also covers the study of the statistical models of geometric type (as, for instance, those that describe the self-avoiding walks) and their formulation in terms of conformal minimal models, including conformal models with O(n) symmetry.


Author(s):  
Jochen Rau

Statistical mechanics concerns the transition from the microscopic to the macroscopic realm. On a macroscopic scale new phenomena arise that have no counterpart in the microscopic world. For example, macroscopic systems have a temperature; they might undergo phase transitions; and their dynamics may involve dissipation. How can such phenomena be explained? This chapter discusses the characteristic differences between the microscopic and macroscopic realms and lays out the basic challenge of statistical mechanics. It suggests how, in principle, this challenge can be tackled with the help of conservation laws and statistics. The chapter reviews some basic notions of classical probability theory. In particular, it discusses the law of large numbers and illustrates how, despite the indeterminacy of individual events, statistics can make highly accurate predictions about totals and averages.


Sign in / Sign up

Export Citation Format

Share Document