scholarly journals Reducing Energy Consumption of the SEECH Algorithm in Wireless Sensor Networks Using a Mobile Sink and Honey Bee Colony Algorithm

2018 ◽  
Vol 10 (1) ◽  
pp. 185-200
Author(s):  
Mohammad Sedighimanesh ◽  
Ali Sedighimanesh

Purpose – Clustering, routing, and data dissemination are an important issue in wireless sensor networks. The basic functions of wireless sensor networks are phenomena controlling in the physical environment, and the reporting of sensed data to the central node called sink, in which more operations can be done on the data. The most important limitation of wireless sensor networks is energy consumption. There are several ways to increase the lifetime of these networks, that one of the most important is the using proper clustering method. The aim of this study is to reduce energy consumption using an effective clustering algorithm and for this purpose, the honeybee colony metaheuristic method was used for cluster heads selection. Methodology/approach/design – The simulation in this paper was done using MATLAB software and the proposed method is compared with the LEACH and SEED approach. Findings – The results of simulations in this research indicate that the research has significantly reduced the energy consumption in the network than LEACH and SEED algorithms. Originality/value – Given the energy constraints in the wireless sensor network, providing such solutions and using metaheuristic algorithms can dramatically reduce energy consumption and, consequently increase network lifetime.

Author(s):  
Khalil Al-shqeerat

<p class="Abstract">In Wireless Sensor Networks, no physical backbone infrastructure used while all sensor nodes are energy constrained and impractical to recharge. The behavior of networks becomes unstable once the first node dies. The key challenge in such networks is how to reduce energy consumption to increase the network lifetime, especially with the different amount of energy in heterogeneity environments.</p><p class="Abstract">In this paper, the virtual backbone routing solution is suggested to reduce energy consumption in a wireless sensor network. An integrated approach combines both advantages of hierarchical cluster-based architecture and shortest spanning tree topology for constructing a virtual backbone with a mobile sink. The clustering solution is used to divide the network into clusters and reduces the number of nodes included in the communication. On the other hand, the shortest spanning tree technique is used to construct a backbone among all cluster heads and mobile sink every time the sink traverses to a new location. The proposed approach aims to construct an efficient data aggregation spanning tree used to send or receive data between the mobile sink and elected cluster heads in wireless sensor networks. It constructs an efficient virtual backbone to decrease the energy consumption and prolong the lifetime of the network.</p>Performance evaluation results demonstrate how the proposed approach prolongs the lifetime of wireless sensor networks compared to some conventional clustering protocols.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Aiping Pang ◽  
Hongbo Zhou ◽  
Junjie Ge

In the water area monitoring of the traditional wireless sensor networks (WSNs), the monitoring data are mostly transmitted to the base station through multihop. However, there are many problems in multihop transmission in traditional wireless sensor networks, such as energy hole, uneven energy consumption, unreliable data transmission, and so on. Based on the high maneuverability of unmanned aerial vehicles (UAVs), a mobile data collection scheme is proposed, which uses UAV as a mobile sink node in WSN water monitoring and transmits data wirelessly to collect monitoring node data efficiently and flexibly. In order to further reduce the energy consumption of UAV, the terminal nodes are grouped according to the dynamic clustering algorithm and the nodes with high residual energy in the cluster are selected as cluster head nodes. Then, according to the characteristics of sensor nodes with a certain range of wireless signal coverage, the angular bisection method is introduced on the basis of the traditional ant colony algorithm to plan the path of UAV, which further shortens the length of the mobile path. Finally, the effectiveness and correctness of the method are proved by simulation and experimental tests.


The wireless sensor networks consist of numerous small nodes which are also called as energy resource-constrained sensor nodes. The communication of these nodes can be done in a various way. There is also the processing of signal tasks which is done through the various computational resources provided by the networks. The energy of the sensor nodes gets consumed when transmit the data or receive data from the network. To reduce energy consumption of the network various techniques has been proposed which are known as clustering techniques. In the proposed work the mobile sink is deployed in the network which reduces overhead in the network. Experimental results shows that the proposed work outperforms the existing one in terms of reduced energy consumption of the network, increased throughput of the network, reduced delay in the network.


2009 ◽  
Vol 06 (02) ◽  
pp. 117-126 ◽  
Author(s):  
FENGJUN SHANG ◽  
MEHRAN ABOLHASAN ◽  
TADEUSZ WYSOCKI

In this paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterheads). This paper focuses on reducing the power consumption of wireless sensor networks. We first extend LEACH's stochastic clusterhead selection algorithm by an average energy-based (LEACH-AE) deterministic component to reduce energy consumption. And then an unequal clustering idea is introduced to further reduce energy consumption of clusterheads. Simulation results show that our modified scheme can extend the network life by up to 38% before the first node dies in the network. Through both theoretical analysis and numerical results, it is shown that the proposed algorithm achieves better performance than the existing clustering algorithms such as LEACH, DCHS, LEACH-C.


2017 ◽  
Vol 25 (1) ◽  
pp. 241-253 ◽  
Author(s):  
Abdul Waheed Khan ◽  
Javed Iqbal Bangash ◽  
Adnan Ahmed ◽  
Abdul Hanan Abdullah

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3726 ◽  
Author(s):  
Zhang ◽  
Qi ◽  
Li

Monitoring of marine polluted areas is an emergency task, where efficiency and low-power consumption are challenging for the recovery of marine monitoring equipment. Wireless sensor networks (WSNs) offer the potential for low-energy recovery of marine observation beacons. Reducing and balancing network energy consumption are major problems for this solution. This paper presents an energy-saving clustering algorithm for wireless sensor networks based on k-means algorithm and fuzzy logic system (KFNS). The algorithm is divided into three phases according to the different demands of each recovery phase. In the monitoring phase, a distributed method is used to select boundary nodes to reduce network energy consumption. The cluster routing phase solves the extreme imbalance of energy of nodes for clustering. In the recovery phase, the inter-node weights are obtained based on the fuzzy membership function. The Dijkstra algorithm is used to obtain the minimum weight path from the node to the base station, and the optimal recovery order of the nodes is obtained by using depth-first search (DFS). We compare the proposed algorithm with existing representative methods. Experimental results show that the algorithm has a longer life cycle and a more efficient recovery strategy.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Hyeonsang Cho ◽  
Jungmin So

In this paper, we propose a data dissemination protocol for asynchronous duty-cycling wireless sensor networks. In an asynchronous duty-cycling network, each node independently selects its wake-up time. In this environment, data dissemination becomes energy consuming, because broadcasting a packet does reach all neighbors but only the neighbors that are awake at the time. A node can forward its packet to all neighbors by continuously transmitting the packet for a whole wake-up interval, but it leads to high energy consumption and high dissemination delay. The idea proposed in this paper is to use opportunistic forwarding, where each node forwards the packet to a neighbor that wakes up early and receives the packet. Each node forwards the packet, as long as there is a neighboring node that has not received the packet yet. The main benefit of this opportunistic forwarding-based dissemination is that every time a packet is disseminated, it may take a different path to reach the nodes. At the beginning of dissemination, a sender needs to transmit for a very short duration of time because there are plenty of neighboring nodes to receive the packet. As more nodes receive the packet, the transmit duration of the sender becomes longer, thus consuming more energy. Since the order of dissemination is different every time, energy consumption is naturally balanced among the nodes, without explicit measures. Through extensive simulations, we show that the proposed protocol achieves longer network lifetime and shorter dissemination delay compared to other dissemination protocols in various network environments.


Sign in / Sign up

Export Citation Format

Share Document