Reduction of energy consumption in wireless sensor networks based on predictable routes for multi-mobile sink

2019 ◽  
Vol 75 (11) ◽  
pp. 7290-7313 ◽  
Author(s):  
A. Karimi ◽  
S. M. Amini
Author(s):  
Khalil Al-shqeerat

<p class="Abstract">In Wireless Sensor Networks, no physical backbone infrastructure used while all sensor nodes are energy constrained and impractical to recharge. The behavior of networks becomes unstable once the first node dies. The key challenge in such networks is how to reduce energy consumption to increase the network lifetime, especially with the different amount of energy in heterogeneity environments.</p><p class="Abstract">In this paper, the virtual backbone routing solution is suggested to reduce energy consumption in a wireless sensor network. An integrated approach combines both advantages of hierarchical cluster-based architecture and shortest spanning tree topology for constructing a virtual backbone with a mobile sink. The clustering solution is used to divide the network into clusters and reduces the number of nodes included in the communication. On the other hand, the shortest spanning tree technique is used to construct a backbone among all cluster heads and mobile sink every time the sink traverses to a new location. The proposed approach aims to construct an efficient data aggregation spanning tree used to send or receive data between the mobile sink and elected cluster heads in wireless sensor networks. It constructs an efficient virtual backbone to decrease the energy consumption and prolong the lifetime of the network.</p>Performance evaluation results demonstrate how the proposed approach prolongs the lifetime of wireless sensor networks compared to some conventional clustering protocols.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Fan Chao ◽  
Zhiqin He ◽  
Aiping Pang ◽  
Hongbo Zhou ◽  
Junjie Ge

In the water area monitoring of the traditional wireless sensor networks (WSNs), the monitoring data are mostly transmitted to the base station through multihop. However, there are many problems in multihop transmission in traditional wireless sensor networks, such as energy hole, uneven energy consumption, unreliable data transmission, and so on. Based on the high maneuverability of unmanned aerial vehicles (UAVs), a mobile data collection scheme is proposed, which uses UAV as a mobile sink node in WSN water monitoring and transmits data wirelessly to collect monitoring node data efficiently and flexibly. In order to further reduce the energy consumption of UAV, the terminal nodes are grouped according to the dynamic clustering algorithm and the nodes with high residual energy in the cluster are selected as cluster head nodes. Then, according to the characteristics of sensor nodes with a certain range of wireless signal coverage, the angular bisection method is introduced on the basis of the traditional ant colony algorithm to plan the path of UAV, which further shortens the length of the mobile path. Finally, the effectiveness and correctness of the method are proved by simulation and experimental tests.


2018 ◽  
Vol 10 (1) ◽  
pp. 185-200
Author(s):  
Mohammad Sedighimanesh ◽  
Ali Sedighimanesh

Purpose – Clustering, routing, and data dissemination are an important issue in wireless sensor networks. The basic functions of wireless sensor networks are phenomena controlling in the physical environment, and the reporting of sensed data to the central node called sink, in which more operations can be done on the data. The most important limitation of wireless sensor networks is energy consumption. There are several ways to increase the lifetime of these networks, that one of the most important is the using proper clustering method. The aim of this study is to reduce energy consumption using an effective clustering algorithm and for this purpose, the honeybee colony metaheuristic method was used for cluster heads selection. Methodology/approach/design – The simulation in this paper was done using MATLAB software and the proposed method is compared with the LEACH and SEED approach. Findings – The results of simulations in this research indicate that the research has significantly reduced the energy consumption in the network than LEACH and SEED algorithms. Originality/value – Given the energy constraints in the wireless sensor network, providing such solutions and using metaheuristic algorithms can dramatically reduce energy consumption and, consequently increase network lifetime.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jia Xu ◽  
Chuan Ping Wang ◽  
Hua Dai ◽  
Da Qiang Zhang ◽  
Jing Jie Yu

TheMobile Sinkbased data collection in wireless sensor network can reduce energy consumption efficiently and has been a new data collection paradigm. In this paper, we focus on exploring polynomial algorithm to compute the constrained trajectory of theMobile Sinkfor data collection. We first present a universal system model for designing constrained trajectory in large-scale wireless sensor networks and formulate the problem as theMaximizing Energy Reduction for Constrained Trajectory(MERC) problem. We show that the MERC problem is NP-hard and design an approximation algorithm (CTMER), which follows the greedy approach to design the movement trajectory of theMobile Sinkby maximizing theeffective average energy reduction. Through both rigid theoretical analysis and extensive simulations, we demonstrate that our algorithm achieves high computation efficiency and is superior to otherMobile Sinkbased data collection methods in aspects of energy consumption and network lifetime.


The wireless sensor networks consist of numerous small nodes which are also called as energy resource-constrained sensor nodes. The communication of these nodes can be done in a various way. There is also the processing of signal tasks which is done through the various computational resources provided by the networks. The energy of the sensor nodes gets consumed when transmit the data or receive data from the network. To reduce energy consumption of the network various techniques has been proposed which are known as clustering techniques. In the proposed work the mobile sink is deployed in the network which reduces overhead in the network. Experimental results shows that the proposed work outperforms the existing one in terms of reduced energy consumption of the network, increased throughput of the network, reduced delay in the network.


2016 ◽  
Vol 12 (12) ◽  
pp. 155014771668203 ◽  
Author(s):  
Guisong Yang ◽  
Lijun Wang ◽  
Linhua Jiang ◽  
Xingyu He

Considering the social properties of mobile sinks, we propose a biased trajectory dissemination of uncontrolled mobile sinks for event collection in wireless sensor networks. In biased trajectory dissemination of uncontrolled mobile sink, we first divide the whole network into clusters which can be managed by cluster heads that are elected in turn for intra-cluster event collection and inter-cluster communication. Second, for a mobile sink, we further divide the clusters it visits into biased clusters and non-biased clusters according to its staying probability. The mobile sink will send its mobility message which shows its location as it moves into a new cluster. We then construct a biased loop which is composed of all biased clusters and some non-biased clusters to disseminate a mobile sink’s mobility message only to clusters on it when the mobile sink moves into a biased cluster. We also construct query path that connects any cluster head that is not on the biased loop to a cluster head on it. An event could be transmitted to the biased loop along the query path for further forwarding to the mobile sink. Numerous simulations show the superior performance of biased trajectory dissemination of uncontrolled mobile sink compared to the representative schemes in terms of average path length, delay, and network energy consumption.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yourong Chen ◽  
Zhangquan Wang ◽  
Tiaojuan Ren ◽  
Yaolin Liu ◽  
Hexin Lv

In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS) is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.


2015 ◽  
Vol 10 (9) ◽  
pp. 2495-2506
Author(s):  
Sayyed Hedayat Tarighi Nejad ◽  
Reza Alinaghian

Wireless sensor networks are a collection of small sensor nodes that can monitor and sense of their surroundings and sending data to a main station. The limited energy of nodes is a major challenge of sensor networks that affect the survival of the network. Thus, as yet is presented several methods to optimization of energy consumption and increasing the lifetime of a sensor network. In this paper, using fuzzy system design and system optimization by genetic algorithm is presented approach to select the best cluster head in sensor networks. Using random data set has been addressed to evaluate of fuzzy-genetic system presented in this paper and finally, MSE rate or mean error of sending the messages using proposed fuzzy system in comparison with LEACH method is calculated in select the cluster head. The results of evaluations is representative of a reduction the MSE metric in proposed method in comparison with LEACH method for select the cluster head. Reduce of MSE directly is effective on energy consumption and lifetime of wireless sensor network and can cause the reduction of energy consumption and increase the lifetime of the networks.


Sign in / Sign up

Export Citation Format

Share Document