scholarly journals ASSESSING WIND DAMAGE RISK IN COMPLEX TERRAIN USING AN AERODYNAMIC MODEL IN ACACIA HYBRID PLANTATIONS IN QUANG TRI, VIETNAM

2021 ◽  
Vol 33 (4) ◽  
pp. 501-515
Author(s):  
NT Minh ◽  
K Koyano ◽  
H Mizunaga
2007 ◽  
Vol 22 (4) ◽  
pp. 285-296 ◽  
Author(s):  
Scott D. Roberts ◽  
Constance A. Harrington ◽  
Karl R. Buermeyer

Abstract Silvicultural treatments designed to enhance stand structural diversity may result in increased wind damage. The ability to avoid conditions that might lead to excessive wind damage would benefit forest managers. We analyzed wind damage following implementation of a variable-density thinning at four sites on the Olympic National Forest in northwest Washington. The prescription created small canopy gaps and retained unthinned patches within a uniformly thinned matrix, thus creating substantial amounts of internal edge. Our objective was to determine whether variable-density thinning resulted in elevated wind damage and whether the damage was spatially related to elements of the treatment, i.e., canopy gaps and uncut patches. Wind damage on the thinned plots averaged slightly more than 8.0 trees/ha. Although precise determinations of residual stem densities were not available, we estimate that total wind damage amounted to 1.3% of total stems remaining following treatment. Approximately 80% of the wind damage was blowdown, the remaining damage being stem breakage, leaning, or bowing. Nearly 54% of the damaged stems were less than 20 cm dbh. The maximum amount of damage observed was 51 trees/ha, but only 3 of 13 thinned plots had wind damage exceeding 7 trees/ha. The overall level of wind damage across all thinned plots after two growing seasons was not statistically greater than on unthinned control plots. Internal edges created by gaps, skid trails, and unthinned patches did not inherently increase wind damage risk; however, where gaps were located in topographically vulnerable positions, greater wind damage did occur. Overall wind damage was not excessive on any of the plots, and after 2 years, all residual stands remained intact and in a manageable condition. Our preliminary results suggest that variable-density thinning that includes creation of small canopy gaps does not necessarily predispose stands to greater risk of wind damage than uniform thinning. However, care must be taken in locating gaps and skid trails away from topographically vulnerable positions.


2021 ◽  
Author(s):  
Meryem Tahri ◽  
Jan Kašpar ◽  
Miroslav Novotny ◽  
Haytham Tahri ◽  
Mohamed Maanan

<p>In the current situation, the forest degradation areas caused by severe wind-breaking has steadily risen. This research proposes an efficient decision support tool to reduce wind damage risk and monitor forest zones. This study provides an outcome of the role of the combination of geographical information system (GIS) and Fuzzy-AHP MATLAB graphical user interface (GUI) for forest managers and environmental consultants. The user-friendly application shows how the research work ensures forest spatial planning and monitoring on ecological and forest management purposes on a regional and national worldwide scale. A representative Czech case study was chosen regarding different parameter characteristics to test our approach. The study also used map surfaces from field survey sampling results and compared the ground truth values at specific locations with data from the new model. The GIS and Fuzzy-AHP GUI are helpful for various consultants in optimizing the decision-support process in many fields.</p>


2008 ◽  
Vol 81 (3) ◽  
pp. 447-463 ◽  
Author(s):  
B. Gardiner ◽  
K. Byrne ◽  
S. Hale ◽  
K. Kamimura ◽  
S. J. Mitchell ◽  
...  

2020 ◽  
Vol 77 (4) ◽  
Author(s):  
Ranjith Gopalakrishnan ◽  
Petteri Packalen ◽  
Veli-Pekka Ikonen ◽  
Janne Räty ◽  
Ari Venäläinen ◽  
...  

Abstract Key message The potential of airborne laser scanning (ALS) and multispectral remote sensing data to aid in generating improved wind damage risk maps over large forested areas is demonstrated. This article outlines a framework to generate such maps, primarily utilizing the horizontal structural information contained in the ALS data. Validation was done over an area in Eastern Finland that had experienced sporadic wind damage. Context Wind is the most prominent disturbance element for Finnish forests. Hence, tools are needed to generate wind damage risk maps for large forested areas, and their possible changes under planned silvicultural operations. Aims (1) How effective are ALS-based forest variables (e.g. distance to upwind forest stand edge, gap size) for identifying high wind damage risk areas? (2) Can robust estimates of predicted critical wind speeds for uprooting of trees be derived from these variables? (3) Can these critical wind speed estimates be improved using wind multipliers, which factor in topography and terrain roughness effects? Methods We first outline a framework to generate several wind damage risk–related parameters from remote sensing data (ALS + multispectral). Then, we assess if such parameters have predictive power. That is, whether they help differentiate between damaged and background points. This verification exercise used 42 wind damaged points spread over a large area. Results Parameters derived from remote sensing data are shown to have predictive power. Risk models based on critical wind speeds are not that robust, but show potential for improvement. Conclusion Overall, this work described a framework to get several wind risk–related parameters from remote sensing data. These parameters are shown to have potential in generating wind damage risk maps over large forested areas.


Author(s):  
Marine Duperat ◽  
Barry Gardiner ◽  
Jean-Claude Ruel

Abstract Widely distributed in Quebec, balsam fir (Abies balsamea (L.) Mill.) is highly vulnerable to wind damage. Recently, there has been a trend in forest management to increase the use of partial cuttings in naturally regenerating stands, leaving the remnant trees at increased risk of wind damage. In order to limit wind damage after partial cuttings, it is therefore important to find silvicultural practices that minimize the risk of wind damage in these fir stands. Our main objective was to find balsam fir-specific values of parameters to integrate into the wind risk model ForestGALES, in order to simulate the impact of different types of commercial thinning on wind damage risk, and to determine which practice potentially minimizes the risk in a naturally regenerated stand. An anemometer placed at canopy height and strain gauges attached to the trunks of balsam firs allowed us to measure the wind-induced bending moments experienced by a sample of balsam fir trees. This enabled the calculation of the turning moment coefficients specific to each of the trees in order to compare them with the ForestGALES model predictions and to adapt the model for balsam fir stands. The model was tested first with only tree diameter and height as input variables to calculate the turning moment coefficient, then with the addition of a competition index, and finally with the addition of crown dimensions. Wind climate parameters for prediction of the probability of damage were calculated using the Wind Atlas Analysis and Application Program airflow model. The model with the highest accuracy was then used to simulate two types of thinning and determine the impact on wind damage risk for each tree in the stand. According to the model’s predictions, thinning from below has a reduced risk of wind damage compared with thinning from above.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Oskars Krišāns ◽  
Linda Čakša ◽  
Roberts Matisons ◽  
Steffen Rust ◽  
Didzis Elferts ◽  
...  

In urbanized areas, wind disturbances can be intensified by anthropogenic stresses under which trees may become hazardous, creating serious threats and damages to nearby targets. Therefore, species with notably lower both wood mechanical properties and compartmentalization, such as pioneers, are considered to have higher wind damage risk if subjected to unfavorable growing conditions. Eurasian aspen (Populus tremula L.) and silver birch (Betula pendula Roth.), are frequently found in both urban and peri-urban forests in Northeastern and Central parts of Europe, which strengthen the necessity for the evaluation of mechanical stability of such species. Therefore, static pulling tests were performed to compare the mechanical stability of the studied species in both urban and peri-urban forests. The loading resistance of the studied species differed, with birch being more stable than aspen, indicating aspen to be more prone to wind damage. Additionally, the mechanical stability of birch did not differ between trees growing in urban and peri-urban forests, suggesting static pulling tests are a suitable method for comparing trees from completely different growing conditions.


Sign in / Sign up

Export Citation Format

Share Document