scholarly journals Effect of Epigallocatechin Gallate on Cadmium Chloride-Induced Changes in Behavior, Biochemical Parameters and Spermatogenesis of Male Sprague Dawley Rats

2021 ◽  
Vol 5 (3) ◽  
pp. 549-554
Author(s):  
Subramani Parasuraman ◽  
Brenda Ngu Yen Qin ◽  
Lam Chew Hui ◽  
James Yu Kar Beng

Abstract Background Epigallocatechin gallate (EGCG) acts as an antioxidant by preventing oxidative stress. The effect of EGCG on aluminum-induced testicular injury is not clear. Hence, the present study is planned to investigate the effect of EGCG on aluminum chloride (AlCl3)-induced changes in behavior, biochemical parameters, and spermatogenesis in male Sprague-Dawley rats. The rats were divided into six groups with six animals each. All the animals were administered with respective assigned treatment once daily for 28 days. The animals in groups I to VI were administered with drug vehicle, AlCl3, vitamin C, EGCG, vitamin C, and EGCG, respectively. The animals in groups V and VI were additionally challenged with AlCl3 (10 mg/kg) immediately after vitamin C and EGCG administration, respectively. Changes in behavior were measured on day 1, 14 and 28. At the end of the study, the blood sample was collected from all the animals, and the serum was separated and used for biochemical analysis. Later, the rats were subjected to bilateral orchiectomy; sperm was collected from the cauda epididymis for microscopic examination. Then, the animals were sacrificed, and the organs such as the brain, lungs, heart, liver, kidney, spleen, and testis were collected for organ weight analysis. Results The animal administered with AlCl3 showed a reduction in locomotor activity, grip strength, and escape latency time whereas vitamin C prevented the effect of AlCl3. But, EGCG did not show any significant changes in AlCl3-induced behavioral and biochemical changes. At the end of the study, vitamin C prevented AlCl3-induced behavioral and biochemical changes. The group of animals administered with AlCl3 showed a reduction in the number of spermatozoa whereas AlCl3 + vitamin C and AlCl3 + EGCG did not show any significant changes in the number of spermatozoa when compared to the control group. Conclusion EGCG prevented AlCl3-induced reduction in epididymal sperm count of male rats and did not show any significant effect on AlCl3-induced changes in behavior and biochemical parameters, whereas vitamin C had an ameliorative effect on AlCl3-induced changes in behavior, biochemical parameter, and spermatogenesis. Graphical abstract


2020 ◽  
Vol 10 (1) ◽  
pp. 29-34
Author(s):  
Subramani Parasuraman ◽  
James Yu Kar Beng ◽  
Lam Chew Hui ◽  
Brenda Ngu Yen Qin

2000 ◽  
Vol 88 (6) ◽  
pp. 2023-2030 ◽  
Author(s):  
S. A. Shore ◽  
J. H. Abraham ◽  
I. N. Schwartzman ◽  
G. G. Krishna Murthy ◽  
J. D. Laporte

During ozone (O3) exposure, adult rats decrease their minute ventilation (V˙e). To determine whether such changes are also observed in immature animals, Sprague-Dawley rats, aged 2, 4, 6, 8, or 12 wk, were exposed to O3(2 ppm) in nose-only-exposure plethysmographs. BaselineV˙e normalized for body weight decreased with age from 2.1 ± 0.1 ml ⋅ min−1⋅ g−1in 2-wk-old rats to 0.72 ± 0.03 ml ⋅ min−1⋅ g−1in 12-wk-old rats, consistent with the higher metabolic rates of younger animals. In adult (8- and 12-wk-old) rats, O3caused 40–50% decreases in V˙e that occurred primarily as the result of a decrease in tidal volume. In 6-wk-old rats, O3-induced changes inV˙e were significantly less, and in 2- and 4-wk-old rats, no significant changes inV˙e were observed during O3exposure. The increased baseline V˙e and the smaller decrements in V˙e induced by O3in the immature rats imply that their delivered dose of O3is much higher than in adult rats. To determine whether these differences in O3dose influence the extent of injury, we measured bronchoalveolar lavage protein concentrations. The magnitude of the changes in bronchoalveolar lavage induced by O3was significantly greater in 2- than in 8-wk-old rats (267 ± 47 vs. 165 ± 22%, respectively, P < 0.05). O3exposure also caused a significant increase in PGE2in 2-wk-old but not in adult rats. The results indicate that the ventilatory response to O3is absent in 2-wk-old rats and that lack of this response, in conjunction with a greater specific ventilation, leads to greater lung injury.


2015 ◽  
Vol 53 (9) ◽  
pp. 1318-1328 ◽  
Author(s):  
BrahmaNaidu Parim ◽  
Nemani Harishankar ◽  
Meriga Balaji ◽  
Sailaja Pothana ◽  
Ramgopal Rao Sajjalaguddam

Sign in / Sign up

Export Citation Format

Share Document