Multichannel Radiation-Hardened Instrumentation Amplifier for Sensor Systems and Analog Interfaces of Demanding Application

2016 ◽  
Vol 18 (1) ◽  
pp. 76-86
Author(s):  
N.N. Prokopenko ◽  
N.V. Butyrlagin ◽  
A.V. Bugakova ◽  
A.A. Ignashin
Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 388 ◽  
Author(s):  
Minwoong Lee ◽  
Seongik Cho ◽  
Namho Lee ◽  
Jongyeol Kim

A radiation-hardened instrumentation amplifier (IA) that allows precise measurement in radiation environments, including nuclear power plants, space environments, and radiation therapy rooms, was designed and manufactured, and its characteristics were verified. Most electronic systems are currently designed using silicon-based complementary metal-oxide semiconductor (CMOS) integrated circuits (ICs) to achieve a highly integrated low-power design. However, fixed charges induced in silicon by ionization radiation cause various negative effects, resulting in, for example, the generation of leakage current in circuits, performance degradation, and malfunction. Given that such problems in radiation environments may directly lead to a loss of life or environmental contamination, it is critical to implement radiation-hardened CMOS IC technology. In this study, an IA used to amplify fine signals of the sensors was designed and fabricated in the 0.18 μm CMOS bulk process. The IA contained sub-circuits that ensured the stable voltage supply needed to implement system-on-chip (SoC) solutions. It was also equipped with special radiation-hardening technology by applying an I-gate n-MOSFET that blocks the radiation-induced leakage currents. Its ICs were verified to provide the intended performance following a total cumulative dose of up to 25 kGy(Si), ensuring its safety in radiation environments.


Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 429 ◽  
Author(s):  
Kyungsoo Jeong ◽  
Duckhoon Ro ◽  
Gwanho Lee ◽  
Myounggon Kang ◽  
Hyung-Min Lee

A nuclear fusion reactor requires a radiation-hardened sensor readout integrated circuit (IC), whose operation should be tolerant against harsh radiation effects up to MGy or higher. This paper proposes radiation-hardening circuit design techniques for an instrumentation amplifier (IA), which is one of the most sensitive circuits in the sensor readout IC. The paper studied design considerations for choosing the IA topology for radiation environments and proposes a radiation-hardened IA structure with total-ionizing-dose (TID) effect monitoring and adaptive reference control functions. The radiation-hardened performance of the proposed IA was verified through model-based circuit simulations by using compact transistor models that reflected the TID effects into complementary metal–oxide–semiconductor (CMOS) parameters. The proposed IA was designed with the 65 nm standard CMOS process and provides adjustable voltage gain between 3 and 15, bandwidth up to 400 kHz, and power consumption of 34.6 μW, while maintaining a stable performance over TID effects up to 1 MGy.


Author(s):  
C. O. Jung ◽  
S. J. Krause ◽  
S.R. Wilson

Silicon-on-insulator (SOI) structures have excellent potential for future use in radiation hardened and high speed integrated circuits. For device fabrication in SOI material a high quality superficial Si layer above a buried oxide layer is required. Recently, Celler et al. reported that post-implantation annealing of oxygen implanted SOI at very high temperatures would eliminate virtually all defects and precipiates in the superficial Si layer. In this work we are reporting on the effect of three different post implantation annealing cycles on the structure of oxygen implanted SOI samples which were implanted under the same conditions.


1991 ◽  
Vol 138 (6) ◽  
pp. 393
Author(s):  
B.T. Meggitt ◽  
W.J.O. Boyle ◽  
K.T.V. Grattan ◽  
A.E. Baruch ◽  
A.W. Palmer

Sign in / Sign up

Export Citation Format

Share Document