scholarly journals Genetically Encoded Neural Activity Indicators

2018 ◽  
Vol 4 (1) ◽  
pp. 1-15
Author(s):  
Fang Luo ◽  
Yin Wei ◽  
Ziyue Wang ◽  
Minmin Luo ◽  
Ji Hu

Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineering. Here we review the design and application of genetically encoded indicators for calcium ions, membrane potential and neurotransmitters. We also summarize common strategies for the design and optimization of genetically encoded neural activity indicators.

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Jose S Torrecilla ◽  
Adela Fernández ◽  
Julian Garcia ◽  
Francisco Rodríguez

This paper discusses the design and application of a filter based on an Artificial Neural Network (ANN) in a chemical engineering process. The design of a filter consists of adapting the algorithms that make up the filter to the process to be filtered. Taking into account that the ANN is able to model almost every type of chemical process, the design and application of a filter based on ANN was studied. In this work, every ANN used was based on Multilayer Perceptron (MLP). Bearing in mind that ANN should reproduce the process as accurately as possible, an optimisation of the ANN (training function and parameters) was carried out. A mathematical model of a reflux in the upper part of a distillation column was used to test the ANN filter. The ANN is able to filter noisy signals with a mean prediction error less than 2.5•10-3 %.


2017 ◽  
Vol 118 (5) ◽  
pp. 2579-2591 ◽  
Author(s):  
Mahmood S. Hoseini ◽  
Jeff Pobst ◽  
Nathaniel Wright ◽  
Wesley Clawson ◽  
Woodrow Shew ◽  
...  

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina. The time-frequency analysis of these recordings revealed pronounced bursts of oscillatory neural activity and a large trial-to-trial variability in the spectral and temporal properties of the observed oscillations. First, local bursts of oscillations varied from trial to trial in both burst duration and peak frequency. Second, oscillations of a given recording site were not autocoherent; i.e., the phase did not progress linearly in time. Third, LFP oscillations at spatially separate locations within the visual cortex were more phase coherent in the presence of visual stimulation than during ongoing activity. In contrast, the membrane potential oscillations from pairs of simultaneously recorded pyramidal neurons showed smaller phase coherence, which did not change when switching from black screen to visual stimulation. In conclusion, neuronal oscillations at distant locations in visual cortex are coherent at the mesoscale of population activity, but coherence is largely absent at the microscale of the membrane potential of neurons. NEW & NOTEWORTHY Coherent oscillatory neural activity has long been hypothesized as a potential mechanism for communication across locations in the brain. In this study we confirm the existence of coherent oscillations at the mesoscale of integrated cortical population activity. However, at the microscopic level of neurons, we find no evidence for coherence among oscillatory membrane potential fluctuations. These results raise questions about the applicability of the communication through coherence hypothesis to the level of the membrane potential.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Matthew W Flounders ◽  
Carlos González-García ◽  
Richard Hardstone ◽  
Biyu J He

Past experiences have enormous power in shaping our daily perception. Currently, dynamical neural mechanisms underlying this process remain mysterious. Exploiting a dramatic visual phenomenon, where a single experience of viewing a clear image allows instant recognition of a related degraded image, we investigated this question using MEG and 7 Tesla fMRI in humans. We observed that following the acquisition of perceptual priors, different degraded images are represented much more distinctly in neural dynamics starting from ~500 ms after stimulus onset. Content-specific neural activity related to stimulus-feature processing dominated within 300 ms after stimulus onset, while content-specific neural activity related to recognition processing dominated from 500 ms onward. Model-driven MEG-fMRI data fusion revealed the spatiotemporal evolution of neural activities involved in stimulus, attentional, and recognition processing. Together, these findings shed light on how experience shapes perceptual processing across space and time in the brain.


Author(s):  
Xingran Wang ◽  
Jiaqing Yan ◽  
Huiran Zhang ◽  
Yi Yuan

Abstract Objective. Previous studies have demonstrated that ultrasound thalamic stimulation (UTS) can treat disorders of consciousness. However, it is still unclear how UTS modulates neural activity in the thalamus and cortex. Approach. In this study, we performed UTS in mice and recorded the neural activities including spike and local field potential (LFP) of the thalamus and motor cortex. We analyzed the firing rate of spikes and the power spectrum of LFPs and evaluated the coupling relationship between LFPs from the thalamus and motor cortex with Granger causality. Main results. Our results clearly indicate that UTS can directly induce neural activity in the thalamus and indirectly induce neural activity in the motor cortex. We also found that there is a strong connection relationship of neural activity between thalamus and motor cortex under UTS. Significance. These results demonstrate that UTS can modulate the neural activity of the thalamus and motor cortex in mice. It has the potential to provide guidance for the ultrasound treatment of thalamus-related diseases.


Author(s):  
Weiping Yang ◽  
Yulin Gao ◽  
Jinglong Wu

In everyday life, visual and auditory are the most common forms of sensory information. Therefore, audiovisual interaction in the brain plays an important role in performance and perception. In addition, our attention system allows us to dynamically select and enhance the processing of objects and events that are the most relevant at each moment. Some studies suggest that attention can modulate audiovisual integration. However, different neural activity of multimodal audiovisual integration can be seen in different attention conditions. This review focuses on the question of what affects selective and divided attention in audiovisual interaction. Neural activities of audiovisual under selective and divided attention conditions are also discussed. This review aims to bring together and summarize previous studies on the interactions between attention and audiovisual integration.


2009 ◽  
Vol 101 (6) ◽  
pp. 3258-3269 ◽  
Author(s):  
A. Mouraux ◽  
G. D. Iannetti

Brief radiant laser pulses can be used to activate cutaneous Aδ and C nociceptors selectively and elicit a number of transient brain responses [laser-evoked potentials (LEPs)] in the ongoing EEG. LEPs have been used extensively in the past 30 years to gain knowledge about the cortical mechanisms underlying nociception and pain in humans, by assuming that they reflect at least neural activities uniquely or preferentially involved in processing nociceptive input. Here, by applying a novel blind source separation algorithm (probabilistic independent component analysis) to 124-channel event-related potentials elicited by a random sequence of nociceptive and non-nociceptive somatosensory, auditory, and visual stimuli, we provide compelling evidence that this assumption is incorrect: LEPs do not reflect nociceptive-specific neural activity. Indeed, our results indicate that LEPs can be entirely explained by a combination of multimodal neural activities (i.e., activities also elicited by stimuli of other sensory modalities) and somatosensory-specific, but not nociceptive-specific, neural activities (i.e., activities elicited by both nociceptive and non-nociceptive somatosensory stimuli). Regardless of the sensory modality of the eliciting stimulus, the magnitude of multimodal activities correlated with the subjective rating of saliency, suggesting that these multimodal activities are involved in stimulus-triggered mechanisms of arousal or attentional reorientation.


2018 ◽  
Author(s):  
Leila Ghanbari ◽  
Russell E. Carter ◽  
Matthew L. Rynes ◽  
Judith Dominguez ◽  
Gang Chen ◽  
...  

ABSTRACTNeural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating cognition, perception and sensorimotor behaviors. Enormous progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. To fill this need, we have engineered “See-Shells” – digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>200 days) optical access to 45 mm2 of the dorsal cerebral cortex in the mouse. We demonstrate the ability to perform mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm through the See-Shells. See-Shells implanted on transgenic mice expressing genetically encoded calcium (Ca2+) indicators allow tracking of neural activities from multiple, non-contiguous regions spread across millimeters of the cortex. Further, neural probes can access the brain through perforated See-Shells, either for perturbing or recording neural activity from localized brain regions simultaneously with whole cortex imaging. As See-Shells can be constructed using readily available desktop fabrication tools and modified to fit a range of skull geometries, they provide a powerful tool for investigating brain structure and function.


Parasitology ◽  
1981 ◽  
Vol 83 (1) ◽  
pp. 33-41 ◽  
Author(s):  
D. M. Miller ◽  
B. S. Wong ◽  
T. T. Dunagan

SUMMARYThe resting membrane potential of the acanthocephalan rete system in Macracanthorhynchus hirudinaceus was −35±1·5 mV (n = 20) and was dependent upon the external potassium concentration. The membrane potential reached 0 mV when the external potassium concentration was 160 mM. Spontaneous spike potentials of 45 mV ± 10 were dependent on calcium flux. The membrane potential was depolarized by acetylcholine, potassium-free medium, calcium ions and chloride-free medium but not by changes in the external sodium concentration. Spontaneous potentials were increased in number by acetylcholine and calcium at concentrations above 3 mM, but were decreased in number by chloride- and calcium-free medium. Hence the rete system potentials are very similar to smooth muscle potentials in many respects.


Sign in / Sign up

Export Citation Format

Share Document