scholarly journals Batas Bawah Bilangan Ramsey pada Graf Bintang S_10 Versus Roda W_12 Lower Bound of the Ramsey Number for the Star Graph S_10 Versus Wheels W_12

2018 ◽  
Vol 3 (1) ◽  
pp. 471
Author(s):  
Hamdana Hadaming ◽  
Andi Ardhila Wahyudi

Bilangan Ramsey untuk graf  terhadap graf , dinotasikan dengan  adalah bilangan bulat terkecil  sedemikian sehingga untuk setiap graf  dengan orde akan memenuhi sifat berikut:  memuat graf  atau komplemen dari  memuat graf .Penelitian ini bertujuan untuk  menentukan graf kritis maksimum  dan  dengan genap. Berdasarkan batas bawah tersebut di tentukan batas atas minimum sehingga diperoleh nilai bilangan Ramsey untuk graf bintang  versus , atau . Dengan demikian penentuan batas bawah bilangan Ramsey  dilakukan dengan cara batas bawah yang  diberikan oleh Chavatal dan Harary, untuk bilangan Ramsey pada graf bintang  versus  adalah , dengan  adalah bilangan kromatik titik graf roda  dan  adalah kardinalitas komponen terbesar graf . Berdasarkan batas bawah Chavatal dan Harary tersebut dikonstruksi graf kritis untuk  dan  yang ordenya lebih besar dari nilai batas bawah yang diberikan Chavatal dan Harary. Orde dari graf kritis tersebut merupakan batas bawah terbaik untuk . Kata kunci: Bilangan Ramsey, bintang, roda AbstractRamsey Numbers for a graph  to a graph , denoted by   is the smallest integer n such that for every graph  of order  either  the following meeet:  contains a graph  or the complement of  contains the graph . This aims of the study to determine the maximum critical graph  and . Based on the lower bound of the specified minimum upper bound in order to obtain numerical values for the Ramsey graph  Star versus  , or . Thus the determination of Ramsey numbers .  is done by determine the lower boundary and upper bound. The lower bound given by Chavatal and Harary, for ramsey number for star graph versus wheel   is , is a point graph of chromatic number wheel  and  is the cardinality of the largest component of the graph . Based on the lower bound Chavatal and Harary graph is constructed critical to  and  are poin greater than the lower bound value given Chavatal and Harary. Order of the critical graph is the best lower bound for . Keywords : Ramsey number, Stars, and Wheels

10.37236/9358 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Maria Axenovich ◽  
Izolda Gorgol

We write $F{\buildrel {\text{ind}} \over \longrightarrow}(H,G)$ for graphs $F, G,$ and $H$, if for any coloring of the edges of $F$ in red and blue, there is either a red induced copy of $H$ or a blue induced copy of $G$. For graphs $G$ and $H$, let $\mathrm{IR}(H,G)$ be the smallest number of vertices in a graph $F$ such that $F{\buildrel {\text{ind}} \over \longrightarrow}(H,G)$. In this note we consider the case when $G$ is a star on $n$ edges, for large $n$ and $H$ is a fixed graph. We prove that  $$ (\chi(H)-1) n \leq \mathrm{IR}(H, K_{1,n}) \leq (\chi(H)-1)^2n + \epsilon n,$$ for any $\epsilon>0$,  sufficiently large $n$, and $\chi(H)$ denoting the chromatic number of $H$. The lower bound is asymptotically tight  for any fixed bipartite $H$. The upper bound is attained up to a constant factor, for example when $H$ is a clique.


10.37236/8085 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Dhruv Rohatgi

For ordered graphs $G$ and $H$, the ordered Ramsey number $r_<(G,H)$ is the smallest $n$ such that every red/blue edge coloring of the complete ordered graph on vertices $\{1,\dots,n\}$ contains either a blue copy of $G$ or a red copy of $H$, where the embedding must preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered Ramsey number $r_<(M, K_3)$, where $M$ is an ordered matching on $n$ vertices. In particular, Conlon et al. asked what asymptotic bounds (in $n$) can be obtained for $\max r_<(M, K_3)$, where the maximum is over all ordered matchings $M$ on $n$ vertices. The best-known upper bound is $O(n^2/\log n)$, whereas the best-known lower bound is $\Omega((n/\log n)^{4/3})$, and Conlon et al. hypothesize that there is some fixed $\epsilon > 0$ such that $r_<(M, K_3) = O(n^{2-\epsilon})$ for every ordered matching $M$. We resolve two special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for ordered matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic upper bound for random ordered matchings with interval chromatic number $2$.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Vojtěch Dvořák

Consider the following game between Builder and Painter. We take some families of graphs $\mathcal{G}_{1},\ldots,\mathcal{G}_t$ and an integer $n$ such that $n \geq R(\mathcal{G}_1,\ldots,\mathcal{G}_t)$. In each turn, Builder picks an edge of initially uncoloured $K_n$ and Painter colours that edge with some colour $i \in \left\{ 1,\ldots,t \right\}$ of her choice. The game ends when a graph $G_i$ in colour $i $ for some $G_i \in \mathcal{G}_i$ and some $i$ is created. The restricted online Ramsey number $\tilde{R}(\mathcal{G}_{1},\ldots,\mathcal{G}_t;n)$ is the minimum number of turns that Builder needs to guarantee the game to end. In a recent paper, Briggs and Cox studied the restricted online Ramsey numbers of matchings and determined a general upper bound for them. They proved that for $n=3r-1=R_2(r K_2)$ we have $\tilde{R}_{2}(r K_2;n) \leq n-1$ and asked whether this was tight. In this short note, we provide a general lower bound for these Ramsey numbers. As a corollary, we answer this question of Briggs and Cox, and confirm that for $n=3r-1$ we have $\tilde{R}_{2}(r K_2;n) = n-1$. We also show that for $n'=4r-2=R_3(r K_2)$ we have $\tilde{R}_{3}(r K_2;n') = 5r-4$.


10.37236/257 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Veselin Jungić ◽  
Tomáš Kaiser ◽  
Daniel Král'

We study the mixed Ramsey number $maxR(n,{K_m},{K_r})$, defined as the maximum number of colours in an edge-colouring of the complete graph $K_n$, such that $K_n$ has no monochromatic complete subgraph on $m$ vertices and no rainbow complete subgraph on $r$ vertices. Improving an upper bound of Axenovich and Iverson, we show that $maxR(n,{K_m},{K_4}) \leq n^{3/2}\sqrt{2m}$ for all $m\geq 3$. Further, we discuss a possible way to improve their lower bound on $maxR(n,{K_4},{K_4})$ based on incidence graphs of finite projective planes.


10.37236/1662 ◽  
2001 ◽  
Vol 9 (1) ◽  
Author(s):  
Benny Sudakov

The Ramsey number $r(C_l, K_n)$ is the smallest positive integer $m$ such that every graph of order $m$ contains either cycle of length $l$ or a set of $n$ independent vertices. In this short note we slightly improve the best known upper bound on $r(C_l, K_n)$ for odd $l$.


Author(s):  
Stefan A. Burr ◽  
Richard A. Duke

AbstractWe are interested here in the Ramsey number r(T, C), where C is a complete k-uniform hypergraph and T is a “tree-like” k-graph. Upper and lower bounds are found for these numbers which lead, in some cases, to the exact value for r(T, C) and to a generalization of a theorem of Chváta1 on Ramsey numbers for graphs. In other cases we show that a determination of the exact values of r(T, C) would be equivalent to obtaining a complete solution to existence question for a certain class of Steiner systems.


2012 ◽  
Vol 21 (1-2) ◽  
pp. 179-186 ◽  
Author(s):  
ANDRÁS GYÁRFÁS ◽  
GÁBOR N. SÁRKÖZY

R. H. Schelp conjectured that if G is a graph with |V(G)| = R(Pn, Pn) such that δ(G) > $$\frac{3|V(G)|}{ 4}$, then in every 2-colouring of the edges of G there is a monochromatic Pn. In other words, the Ramsey number of a path does not change if the graph to be coloured is not complete but has large minimum degree.Here we prove Ramsey-type results that imply the conjecture in a weakened form, first replacing the path by a matching, showing that the star-matching–matching Ramsey number satisfying R(Sn, nK2, nK2) = 3n − 1. This extends R(nK2, nK2) = 3n − 1, an old result of Cockayne and Lorimer. Then we extend this further from matchings to connected matchings, and outline how this implies Schelp's conjecture in an asymptotic sense through a standard application of the Regularity Lemma.It is sad that we are unable to hear Dick Schelp's reaction to our work generated by his conjecture.


1999 ◽  
Vol 8 (3) ◽  
pp. 229-235 ◽  
Author(s):  
JOSEPH E. BONIN ◽  
JENNIFER McNULTY ◽  
TALMAGE JAMES REID

A tight upper bound on the number of elements in a connected matroid with fixed rank and largest cocircuit size is given. This upper bound is used to show that a connected matroid with at least thirteen elements contains either a circuit or a cocircuit with at least six elements. In the language of matroid Ramsey numbers, n(6, 6) = 13: this is the largest currently known matroid Ramsey number.


2020 ◽  
Vol 3 (2) ◽  
pp. 109
Author(s):  
Anie Lusiani ◽  
Edy Tri Baskoro ◽  
Suhadi Wido Saputro

<p>Burger and Vuuren defined the size multipartite Ramsey number for a pair of complete, balanced, multipartite graphs <em>mj</em>(<em>Ka</em>x<em>b</em>,<em>Kc</em>x<em>d</em>), for natural numbers <em>a,b,c,d</em> and <em>j</em>, where <em>a,c</em> &gt;= 2, in 2004. They have also determined the necessary and sufficient conditions for the existence of size multipartite Ramsey numbers <em>mj</em>(<em>Ka</em>x<em>b</em>,<em>Kc</em>x<em>d</em>). Syafrizal <em>et al</em>. generalized this definition by removing the completeness requirement. For simple graphs <em>G</em> and <em>H</em>, they defined the size multipartite Ramsey number <em>mj</em>(<em>G,H</em>) as the smallest natural number <em>t</em> such that any red-blue coloring on the edges of <em>Kj</em>x<em>t</em> contains a red <em>G</em> or a blue <em>H</em> as a subgraph. In this paper, we determine the necessary and sufficient conditions for the existence of multipartite Ramsey numbers <em>mj</em>(<em>G,H</em>), where both <em>G</em> and <em>H</em> are non complete graphs. Furthermore, we determine the exact values of the size multipartite Ramsey numbers <em>mj</em>(<em>K</em>1,<em>m</em>, <em>K</em>1,<em>n</em>) for all integers <em>m,n &gt;= </em>1 and <em>j </em>= 2,3, where <em>K</em>1,<em>m</em> is a star of order <em>m</em>+1. In addition, we also determine the lower bound of <em>m</em>3(<em>kK</em>1,<em>m</em>, <em>C</em>3), where <em>kK</em>1,<em>m</em> is a disjoint union of <em>k</em> copies of a star <em>K</em>1,<em>m</em> and <em>C</em>3 is a cycle of order 3.</p>


2020 ◽  
Vol 17 (1) ◽  
pp. 61-70
Author(s):  
Edy Saputra ◽  
Nurdin Hinding ◽  
Supri Amir

This paper aims to determine the total vertex irregularity strength and total edge irregularity strength of Butterfly and Beneš Network 5-Dimension. The determination of the total vertex irregularity strength and the edge irregularity strength was conducted by determining the lower bound and upper bound.  The lower bound was analyzed based on characteristics of the graph and other proponent theorems, while upper bound was analyzed by constructing the function of the irregular total labeling. The result show that the total vertex irregularity strength of Butterfly Network , the total edge irregularity strength . The total vertex irregularity strength of Beneš Network , the total edge irregularity strength


Sign in / Sign up

Export Citation Format

Share Document