The Matroid Ramsey Number n(6,6)

1999 ◽  
Vol 8 (3) ◽  
pp. 229-235 ◽  
Author(s):  
JOSEPH E. BONIN ◽  
JENNIFER McNULTY ◽  
TALMAGE JAMES REID

A tight upper bound on the number of elements in a connected matroid with fixed rank and largest cocircuit size is given. This upper bound is used to show that a connected matroid with at least thirteen elements contains either a circuit or a cocircuit with at least six elements. In the language of matroid Ramsey numbers, n(6, 6) = 13: this is the largest currently known matroid Ramsey number.

10.37236/1662 ◽  
2001 ◽  
Vol 9 (1) ◽  
Author(s):  
Benny Sudakov

The Ramsey number $r(C_l, K_n)$ is the smallest positive integer $m$ such that every graph of order $m$ contains either cycle of length $l$ or a set of $n$ independent vertices. In this short note we slightly improve the best known upper bound on $r(C_l, K_n)$ for odd $l$.


10.37236/8085 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Dhruv Rohatgi

For ordered graphs $G$ and $H$, the ordered Ramsey number $r_<(G,H)$ is the smallest $n$ such that every red/blue edge coloring of the complete ordered graph on vertices $\{1,\dots,n\}$ contains either a blue copy of $G$ or a red copy of $H$, where the embedding must preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered Ramsey number $r_<(M, K_3)$, where $M$ is an ordered matching on $n$ vertices. In particular, Conlon et al. asked what asymptotic bounds (in $n$) can be obtained for $\max r_<(M, K_3)$, where the maximum is over all ordered matchings $M$ on $n$ vertices. The best-known upper bound is $O(n^2/\log n)$, whereas the best-known lower bound is $\Omega((n/\log n)^{4/3})$, and Conlon et al. hypothesize that there is some fixed $\epsilon > 0$ such that $r_<(M, K_3) = O(n^{2-\epsilon})$ for every ordered matching $M$. We resolve two special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for ordered matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic upper bound for random ordered matchings with interval chromatic number $2$.


2018 ◽  
Vol 3 (1) ◽  
pp. 471
Author(s):  
Hamdana Hadaming ◽  
Andi Ardhila Wahyudi

Bilangan Ramsey untuk graf  terhadap graf , dinotasikan dengan  adalah bilangan bulat terkecil  sedemikian sehingga untuk setiap graf  dengan orde akan memenuhi sifat berikut:  memuat graf  atau komplemen dari  memuat graf .Penelitian ini bertujuan untuk  menentukan graf kritis maksimum  dan  dengan genap. Berdasarkan batas bawah tersebut di tentukan batas atas minimum sehingga diperoleh nilai bilangan Ramsey untuk graf bintang  versus , atau . Dengan demikian penentuan batas bawah bilangan Ramsey  dilakukan dengan cara batas bawah yang  diberikan oleh Chavatal dan Harary, untuk bilangan Ramsey pada graf bintang  versus  adalah , dengan  adalah bilangan kromatik titik graf roda  dan  adalah kardinalitas komponen terbesar graf . Berdasarkan batas bawah Chavatal dan Harary tersebut dikonstruksi graf kritis untuk  dan  yang ordenya lebih besar dari nilai batas bawah yang diberikan Chavatal dan Harary. Orde dari graf kritis tersebut merupakan batas bawah terbaik untuk . Kata kunci: Bilangan Ramsey, bintang, roda AbstractRamsey Numbers for a graph  to a graph , denoted by   is the smallest integer n such that for every graph  of order  either  the following meeet:  contains a graph  or the complement of  contains the graph . This aims of the study to determine the maximum critical graph  and . Based on the lower bound of the specified minimum upper bound in order to obtain numerical values for the Ramsey graph  Star versus  , or . Thus the determination of Ramsey numbers .  is done by determine the lower boundary and upper bound. The lower bound given by Chavatal and Harary, for ramsey number for star graph versus wheel   is , is a point graph of chromatic number wheel  and  is the cardinality of the largest component of the graph . Based on the lower bound Chavatal and Harary graph is constructed critical to  and  are poin greater than the lower bound value given Chavatal and Harary. Order of the critical graph is the best lower bound for . Keywords : Ramsey number, Stars, and Wheels


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
J. A. Grytczuk ◽  
H. A. Kierstead ◽  
P. Prałat

Graphs and Algorithms International audience We study on-line version of size-Ramsey numbers of graphs defined via a game played between Builder and Painter: in one round Builder joins two vertices by an edge and Painter paints it red or blue. The goal of Builder is to force Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of rounds (assuming both players play perfectly) is the on-line Ramsey number r(H) of the graph H. We determine exact values of r(H) for a few short paths and obtain a general upper bound r(Pn) ≤ 4n −7. We also study asymmetric version of this parameter when one of the target graphs is a star Sn with n edges. We prove that r(Sn, H) ≤ n*e(H) when H is any tree, cycle or clique


Author(s):  
Chula J. Jayawardene

A popular area of graph theory is based on a paper written in 1930 by F. P. Ramsey titled “On a Problem on Formal Logic.” A theorem which was proved in his paper triggered the study of modern Ramsey theory. However, his premature death at the young age of 26 hindered the development of this area of study at the initial stages. The balanced size multipartite Ramsey number mj (H,G) is defined as the smallest positive number s such that Kj×s→ (H,G). There are 36 pairs of (H, G), when H, G represent connected graphs on four vertices (as there are only 6 non-isomorphic connected graphs on four vertices). In this chapter, the authors find mj (H, G) exhaustively for all such pairs in the tripartite case j=3, and in the quadpartite case j=4, excluding the case m4 (K4,K4). In this case, the only known result is that m4 (K4,K4) is greater than or equal to 4, since no upper bound has been found as yet.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Vojtěch Dvořák

Consider the following game between Builder and Painter. We take some families of graphs $\mathcal{G}_{1},\ldots,\mathcal{G}_t$ and an integer $n$ such that $n \geq R(\mathcal{G}_1,\ldots,\mathcal{G}_t)$. In each turn, Builder picks an edge of initially uncoloured $K_n$ and Painter colours that edge with some colour $i \in \left\{ 1,\ldots,t \right\}$ of her choice. The game ends when a graph $G_i$ in colour $i $ for some $G_i \in \mathcal{G}_i$ and some $i$ is created. The restricted online Ramsey number $\tilde{R}(\mathcal{G}_{1},\ldots,\mathcal{G}_t;n)$ is the minimum number of turns that Builder needs to guarantee the game to end. In a recent paper, Briggs and Cox studied the restricted online Ramsey numbers of matchings and determined a general upper bound for them. They proved that for $n=3r-1=R_2(r K_2)$ we have $\tilde{R}_{2}(r K_2;n) \leq n-1$ and asked whether this was tight. In this short note, we provide a general lower bound for these Ramsey numbers. As a corollary, we answer this question of Briggs and Cox, and confirm that for $n=3r-1$ we have $\tilde{R}_{2}(r K_2;n) = n-1$. We also show that for $n'=4r-2=R_3(r K_2)$ we have $\tilde{R}_{3}(r K_2;n') = 5r-4$.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.


Author(s):  
Luis Ferroni

AbstractWe provide a formula for the Ehrhart polynomial of the connected matroid of size n and rank k with the least number of bases, also known as a minimal matroid. We prove that their polytopes are Ehrhart positive and $$h^*$$ h ∗ -real-rooted (and hence unimodal). We prove that the operation of circuit-hyperplane relaxation relates minimal matroids and matroid polytopes subdivisions, and also preserves Ehrhart positivity. We state two conjectures: that indeed all matroids are $$h^*$$ h ∗ -real-rooted, and that the coefficients of the Ehrhart polynomial of a connected matroid of fixed rank and cardinality are bounded by those of the corresponding minimal matroid and the corresponding uniform matroid.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
M. M. M. Jaradat ◽  
M. S. A. Bataineh ◽  
S. M. E. Radaideh

The graph Ramsey number is the smallest integer with the property that any complete graph of at least vertices whose edges are colored with two colors (say, red and blue) contains either a subgraph isomorphic to all of whose edges are red or a subgraph isomorphic to all of whose edges are blue. In this paper, we consider the Ramsey numbers for theta graphs. We determine , for . More specifically, we establish that for . Furthermore, we determine for . In fact, we establish that if is even, if is odd.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 764
Author(s):  
Yaser Rowshan ◽  
Mostafa Gholami ◽  
Stanford Shateyi

For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.


Sign in / Sign up

Export Citation Format

Share Document