Site Specific Response Spectrum and Time History Analysis of Shear Walled Buildings

2011 ◽  
Vol 1 (1) ◽  
pp. 40-49
Author(s):  
Paresh V. Patel
2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


2012 ◽  
Vol 166-169 ◽  
pp. 2164-2170
Author(s):  
Xu Jie Sun ◽  
Hou Zhang ◽  
Da Gang Lu ◽  
Feng Lai Wang

The design process of the 100 m high reinforced concrete masonry building in China was firstly presented, deformation check calculation under earthquake action by mode-superposition response spectrum method and time-history analysis method were detailed and deformation under wind load was also checked. Then elastic-plastic deformation under earthquake action was checked by time-history analysis method and pushover analysis method with both under uniform load and reverse triangle load. The conclusion is construct 100 m high office building built in Fortification intensity 6 by reinforced concrete masonry is feasible. Then the building was redesigned as built in fortification 7, the same check was performed as that have been done in fortification 6, it is feasible too.


2005 ◽  
Vol 128 (3) ◽  
pp. 364-369 ◽  
Author(s):  
Y. M. Parulekar ◽  
G. R. Reddy ◽  
K. K. Vaze ◽  
K. Muthumani

Passive energy dissipating devices, such as elastoplastic dampers (EPDs) can be used for eliminating snubbers and reducing the response of piping systems subjected to seismic loads. Cantilever and three-dimensional piping systems were tested with and without EPD on shaker table. Using a finite element model of the piping systems, linear and nonlinear time-history analysis is carried out using Newmark’s time integration technique. Equivalent linearization technique, such as Caughey method, is used to evaluate the equivalent damping of the piping systems supported on elastoplastic damper. An iterative response spectrum method is used for evaluating response of the piping system using this equivalent damping. The analytical maximum response displacement obtained at the elastoplastic damper support for the two piping systems is compared with experimental values and time history analysis values. It has been concluded that the iterative response spectrum technique using Caughey equivalent damping is simple and results in reasonably acceptable response of the piping systems supported on EPD.


2013 ◽  
Vol 351-352 ◽  
pp. 849-853
Author(s):  
Lan Chen ◽  
De Long Lu ◽  
Xiao Gang Yin

Based on the vertical seismic information, the vertical seismic response spectrum was calculated by Matlab Lsim function. The seismic effect of Kiewitt-Lamella suspended-dome was measured by dynamic to static ratio. According to the EL-Centro seismic wave, it analyzed and compared the dynamic to static ratios which were calculated by the following four vertical seismic calculation methods respectively: the simplified method of specification, the mode-superposition response spectrum methods based on the horizontal earthquake affecting coefficients and the vertical acceleration response spectrum respectively, and the time history analysis method. Analysis shows that: For the seismic effect, the time history analysis method is larger than the other three methods, and the method based on the vertical acceleration response spectrum is closer to the time history analysis method. Owing to large difference of the four methods for seismic effect, various methods should be adopted to ensure the safety of vertical seismic design.


2017 ◽  
Author(s):  
George Wang ◽  
Michelle Loh ◽  
Yen-Tun Peng ◽  
Joanne Shen ◽  
P. E. Genesis ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 3988-3991 ◽  
Author(s):  
Pei Ju Chang ◽  
Jian Zhu

This study focus on derivation of such fragility curves using classic mid-story isolation and reduction structures (MIRS) in China metropolis. A set of stochastic earthquake waves compatible with the response spectrum of China seismic code selected to represent the variability in ground motion. Dynamic inelastic time history analysis was used to analyze the random sample of structures. The result reveal that good effect for superstructure and reduction effect for substructure of MIRS is favorable and obvious under major earthquake, Weak position of MIRS was be pointed out and fragility curves of typical MIRS of China was obtained finally.


CivilEng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 712-735
Author(s):  
Yiwei Hu ◽  
Nelson Lam ◽  
Prashidha Khatiwada ◽  
Scott Joseph Menegon ◽  
Daniel T. W. Looi

Code response spectrum models, which are used widely in the earthquake-resistant design of buildings, are simple to apply but they do not necessarily represent the real behavior of an earthquake. A code response spectrum model typically incorporates ground motion behavior in a diversity of earthquake scenarios affecting the site and does not represent any specific earthquake scenario. The soil amplification phenomenon is also poorly represented, as the current site classification scheme contains little information over the potential dynamic response behavior of the soil sediments. Site-specific response spectra have the merit of much more accurately representing real behavior. The improvement in accuracy can be translated into significant potential cost savings. Despite all the potential merits of adopting site-specific response spectra, few design engineers make use of these code provisions that have been around for a long time. This lack of uptake of the procedure by structural designers is related to the absence of a coherent set of detailed guidelines to facilitate practical applications. To fill in this knowledge gap, this paper aims at explaining the procedure in detail for generating site-specific response spectra for the seismic design or assessment of buildings. Surface ground motion accelerograms generated from the procedure can also be employed for nonlinear time-history analyses where necessary. A case study is presented to illustrate the procedure in a step-by-step manner.


2020 ◽  
Vol 86 (888) ◽  
pp. 20-00129-20-00129
Author(s):  
Yoshihiro TAKAYAMA ◽  
Ayaka YOSHIDA ◽  
Nobuyoshi IRIKI ◽  
Eiichi MAEDA

2020 ◽  
Vol 9 (1) ◽  
pp. 1986-1990

The structural response of any structure is the result of various dynamic phenomenon which lead to vibrations or shaking of the structure , depending on the duration of the ground motion, its frequency and time period. In the present work, dynamic analysis of a typical steel silo is done by using linear Time History Analysis and Response Spectrum method for earthquake Zone V as per Indian code. Two analyses are carried out namely, Time History Analysis (THA) and Response Spectrum Analysis (RSA) using STAAD.ProV8i software. The Load combinations are worked out as per IS-1893-2002. The results in terms of Fundamental natural period, Design Base shear, Lateral Displacements, are compared for the two different silo models considered in the present study.


Sign in / Sign up

Export Citation Format

Share Document